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Complexity and the Evolution of Computing:
Biological Principles for Managing Evolving Systems
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Computers collaborate in the Internet/Web much the way cells 
collaborate in multicellular organisms.  But cells do it better!  What 
can we learn from them?

Single cell organisms evolved into multicellular organisms long ago.  Today we are seeing a 
similar transition in computing. Twenty years ago few computers communicated directly with 
others.  Now hundreds of millions of computers exchange information at Internet speeds. The 
digital world inexorably becomes more complex.  Bigger groups of computers collaborate in 
more complicated and less transparent ways. In doing so, they encounter problems common to all 
complex systems – problems already solved in the evolution of living systems.  This paper 
explores those problems and some architectural solutions to them.

* The author worked at IBM from 1995 to 2005.  He is now an independent consultant.  His homepage is 
available at www.evolutionofcomputing.org .  A “webified” version of these ideas is accessible from there.
** Revision History – Private drafts began in 2000.  But this project stayed very much in the background 
while the author was at IBM.  The first public version, in the form of a PowerPoint presentation to the 
TII/Vanguard Conference on Complexity in Los Angeles, was presented 9/28/2004.  The first version in the 
form of a paper was released 11/14/2004 with minor modifications a month later. This version includes 
substantive revisions and additions that have accumulated over the last couple of years. 
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Introduction
Complexity in the digital world is beyond our control.  Operating systems, applications, browser 
plug-ins, clusters and grids, blogs and wikis, peer-to-peer file-sharing networks, and collaborating 
web-services grow and mutate before our eyes.  Computing systems are seldom designed these 
days, they evolve and as they do so they become ever more Byzantine and complex.  The Internet 
and the Web are the most obvious example of this evolution. While the underlying protocols were 
designed, the resulting networks emerged in unexpected ways as people discovered novel ways to 
exploit those protocols.  Precise control and management of these complex systems is no longer 
possible.

As computing systems evolve and become ever more complex, many people have begun 
speaking about them in terms of biological analogies.  Carver Mead said years ago that, 
“engineers would be foolish to ignore the lessons of a billion years of evolution.”1  His 
observation is even more applicable today since our computing systems increasingly have a life 
of their own.

Coping with the escalating consequences of complexity requires a new perspective.  Computing 
today is more about what happens between computers than what happens inside them.  That is, it 
is the interactions between them as they collaborate in networks that provide the most value and 
generate the biggest challenges.  In terms of a biological analogy, we are dealing with the 
transition from single-cell computing to multicellular computing.  Therefore, this paper proposes 
that we focus on the way complex biological systems made the evolutionary transition from 
single-cell organisms to multi-cell organisms.  I will explore a few broad strategies that 
multicellular living systems use and that satisfy the following guidelines:
• They are rare in single cell organisms;
• They are nearly universal in multicellular organisms;
• They evolved before or coincident with the emergence of multicellular life;
• And they are suggestive of analogs in computing.

Complexity is out of control
Civil engineers who create steel bridges have a saying that "rust never sleeps." The comparable 
maxim in computing ought to be that "complexity never sleeps."  And, once complexity is out of 
control, it takes control.  Computing professionals work tirelessly to reduce complexity but all too 
often their efforts actually exacerbate it because the already complex systems are far beyond our 
comprehension.

If there is any doubt that complexity is out of hand, think of the various types of IT specialists 
who are focused on issues that were almost unheard of a decade ago.  IT professionals expend 
substantial resources detecting and cleaning virus and worm infections, patching machines, 
modifying firewalls, updating virus detection software, updating spam filters, and the like. There 
are computing epidemiologists who seek to identify new viral outbreaks before too much damage 
occurs.  And there are computing pathologists who dissect new viruses and worms to see how 
they work.  Is this not like the world of multicellular life, where small viruses and bacteria 
constantly vie for life’s energy and replicative power?

1 Carver Mead, a professor of Computer Science at Cal Tech was talking then (1993) about constructing a 
silicon retina and silicon cochlea.  The rapid growth of the Internet was just beginning at that time.  Its 
current extent and complexity were not imagined then.
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Much of the runaway complexity is inherent in what we are now asking computing systems to do: 
principally to participate in ever more complex networks of machines.  In addition to the 
increasingly complicated human-controlled client PCs on the net, the Internet now includes 
PDAs, cell phones, wireless routers, web cams, bar-code readers, RFID sensors, credit-card 
readers, and microphones for VOIP telephony.  Effectors such as pumps and valves, traffic light 
controllers, music synthesizers, and all manner of household appliances increasingly have web 
interfaces.  If a hacker hijacks your “smart” coffee-maker, you may be irritated, but not 
threatened.  If he hacks into your bedroom baby-cam or the system that controls traffic lights 
between home and work, it goes beyond irritation.  If he hacks into the system that controls the 
pumps and valves at a large oil refinery, chemical plant, or nuclear power plant it can become a 
disaster.  Yet the complexity of the elements, not to mention the complexity of their interactions, 
seems to provide an ever-growing smorgasbord of unanticipated and unprotected opportunities 
for hackers.

Truly, the network is the computer these days, and that network is under attack.  Researchers at 
the Internet Storm Center estimate that, on average, an unpatched Windows PC connected to the 
Internet will survive for about 20 minutes before it is compromised by malicious software.  We 
cannot download and install the necessary patches to protect the machine in 20 minutes!  And 
attacks are accelerating.  Estimates of the number of new Windows viruses and worms in 2006 
ranges between 5,000 and 20,000.  The capabilities of viruses and worms continues to evolve as 
well.  For example, many worms try “… to install a ‘sniffer,’ seeking to use infected computers 
to capture login and banking information from other computers on the same network.”2

It is tempting to believe that the only solution to such dangers is to redouble our efforts to control 
complexity.  Certainly we should continue to construct better engineering solutions to each 
problem: reduce complexity, create more perfect firewalls, and structure the interactions between 
all computers under our control.  But we must also understand that such measures are stopgaps. 
As Tahar Elgamal points out, “The hard truth of network security is that while many approaches 
are good, no individual effort makes the network completely safe. Implement enough fixes, and 
you only succeed at making your network more complex and, hence, more ungovernable, with 
solutions that wind up acting at cross-purposes.” 3  The same can be said for each of the other 
specialized tasks in managing complex computing systems.

Therefore, while we continue improving our systems in a piecemeal way, we must accept our 
inability to control the computing or networking environment.  That environment is constantly 
changing in ways that are beyond the control of any person or organization.  Instead, we should 
look for large-scale architectural approaches that are inherently less susceptible to failure.  Where 
better to look than the biological world where complexity has been evolving for billions of years?

2 http://news.netcraft.com/archives/2004/09/13/new_worm_installs_network_traffic_sniffer.html
3 http://news.com.com/Begging+for+trouble+on+security/2010-1009_3-5306242.html
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Parallels between biology and computing

Information processing
In the last decade, it has become relatively common for biologists to think of biological systems 
in information processing terms.  As a National Science Foundation workshop report puts it: “A 
series of discoveries over the past fifty years have illuminated the extraordinary capabilities of 
living cells to store and process information. We have learned that genes encoded digitally as 
nucleotide sequences serve as a kind of instruction manual for the chemical processes within the 
cell and constitute the hereditary information that is passed from parents to their offspring. 
Information storage and processing within the cell is more efficient by many orders of magnitude 
than electronic digital computation, with respect to both information density and energy 
consumption.”4  

The central idea of this paper is that computing professionals would do well to understand the 
parallels too.  All living organisms, from single cells in pond water to humans, survive by 
constantly processing information about threats and opportunities in the world around them.  For 
example, single-cell E-coli bacteria have a sophisticated chemical sensor patch on one end that 
processes several different aspects of its environment and biases its movement toward attractant 
and away from repellent chemicals.5  At a cellular level, the information processing machinery of 
life is a complex network of thousands of genes and gene-expression control pathways that 
dynamically adapt the cell’s function to its environment.

Despite the above similarities, we cannot directly compare the information processing “power” of 
a cell to that of a computer.  Size, energy usage, and computational density clearly favor the cell. 
Memory capability may perhaps be compared somewhat directly.  A human cell has about one 
Giga-byte of program memory (i.e., 3.5 billion bases where each base encodes 2 bits of 
information) however a modern PC probably uses considerably more working memory than a 
cell.  In terms of computational power, cells use a highly parallel architecture whereas computers 
use a serial architecture.  At this point even the most powerful computer (IBM’s Blue Gene) 
cannot simulate all the processes of a single cell in real-time.  In fact, it can’t even simulate one 
process – the folding of a single protein molecule – in anything like real-time.  Nor can even the 
most complex cell accomplish what a mundane four-function calculator can do, especially in 
terms of precision and reproducibility.  Cells and computers simply face different tasks and have 
different capabilities.  Still, individual computers and single cells play similar roles in the large-
scale sweep of evolution.  Just as computers are the initial unit of computation, cells are the initial 
unit of life.  And the challenges of communication and collaboration between networked 
computers are similar to those between cells in a multicellular organism.

The need for encapsulation
Both biological and computing systems face the issue of encapsulation, i.e., ways of limiting the 
scale and extent of interactions. If it weren’t for the risk – actually virtual certainty – of runaway 
interactions, a pond, lake, or even an ocean could be one large biochemical “organism” and all 
computing on the planet could share one vast unprotected address space.  However, the 
probability of unforeseen and unwanted behavior grows rapidly as the number of possible 
4 From an NSF Workshop report by Arthur Delcher, Lee Hood & Richard Karp, see 
www.nsf.gov/pubs/1998/nsf97168/nsf97168.htm
5 See Dennis Bray article at www.pnas.org/cgi/content/extract/99/1/7
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interactions grows.  So, both life and computing have evolved ways to compartmentalize their 
activity in small, more controllable units.  Life evolved the cell, then other protective walls such 
as skin, bark, shells, and exoskeletons.  Computing evolved segmented address spaces that 
differentiate between code and data spaces, and then abstract virtual memory spaces.  Software 
encapsulation began with separate functions, elimination of GOTO statements, and finally 
enforced encapsulation in message-sending object-oriented systems. Barriers in multicellular 
computing include firewalls, DMZs, and protected network domains, i.e., intranets,

Change by evolutionary processes
We tend to talk about computing systems as if they were engineered.  And some clearly are, 
particularly hardware systems.  Software systems, however, especially large or old software 
systems, owe much more to evolution than we sometimes wish to acknowledge.  Complex 
software systems may start with good engineering but all too soon the best intentions of software 
engineers give way to expediency.

While it may be imprecise to refer to a given system as being either evolved or engineered, we 
intuitively understand what we mean by engineering.  Engineered systems reflect a number of 
accepted principles of good design.  For example, the parts in engineered systems have known 
functions, irrelevant parts are removed, redundancy is explicit, and designers attempt to maintain 
separation of concerns, i.e., a part participates in just one functional unit and is designed to do one 
thing and do it well. Engineered systems do everything possible to prevent the emergence of 
unforeseen consequences.  In contrast, parts in evolved systems may have mysterious interactions 
with several apparently separate functions and may not seem to be optimized for any of those 
roles.

Biology seeks to understand the frozen consequences of 3.5 billion years of evolutionary 
accidents.  As evolution progresses, the living systems become more elaborate and develop 
hierarchical levels of complexity from complex chemistry to complex cells to complex organisms 
and on to complex ecologies.6  Biological systems are a triumph of layer after layer of what 
software professionals would call “clever hacks.”  Each new layer exploits the hacks that have 
come before.  So, biological systems contain vestiges of the ancestral history of the organism. 
Vestigial functional units may or may not be relevant to current circumstances.  Some may still 
be functional in unusual circumstances (e.g., rarely used metabolic functions).  Others, such as 
substantial segments of human DNA may have no function.  

To any IT manager, the above should sound very familiar.  The history of computing may be 
relatively short but, as we learned in the “year 2000” experience, it is long enough for legacy 
computing systems to be full of obscure code that may or may not be relevant to current 
circumstances.  The similarity cannot be pushed much further, though.  In computing systems, 
complexity tends to make the systems more fragile whereas in biological systems , redundancy 
more often reflects a robustness in the face of unforeseen circumstances far beyond the 
redundancy found in engineered systems.

Evolved systems, be they biological, social, economic, or computing systems, change over time 
as a result of the interaction between various sources of novelty and various mechanisms for 
weeding out “undesirable” or “unfit” novelty.  In biological evolution, novelty is presumed to 
occur by various random processes and weeding-out occurs when an organism does not survive 
long enough to produce offspring.  Novelty in computing usually arises from human creativity. 
Because computers are general purpose modeling tools, there are always new ways they can be 

6 “The minor transitions in hierarchical evolution and the question of a directional bias,” McShea, D. W., J. 
Evolutionary Biology, Vol. 14, pp. 502-518, Blackwell Science, Ltd., 2001.
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used, new ways for them to interact, and new architectures for their design and construction. 
Novelty is weeded out when the novel systems simply don’t work, or don’t scale.  But most often 
novelty fails simply because the marketplace rejects it.

The fitness of new variations in either biological systems or computing systems is determined 
within a constantly changing “fitness landscape.”  These systems co-evolve with many other 
biological or computing systems that may compete or cooperate (or both).  Co-evolution in 
predator/prey or symbiotic relationships tends to drive evolution more rapidly, something that 
should sound familiar as we cope with today’s co-evolutionary spiral between computing 
virus/worm predators and their Windows prey.  The interplay between email spammers and spam 
filter developers is another obvious example.

Artificial monocultures, i.e., large populations of genetically identical organisms such as corn 
fields or rubber plantations are big, stationary targets for diverse evolving predators.  Their lack 
of diversity puts them at risk in the co-evolutionary arms race.  Once any virus, bacteria, fungus 
or insect manages by mutation to escape the defenses of one plant in the monoculture, all plants 
are immediately at risk.  The Irish potato famine in 1845-50 is an unfortunate example of what 
can happen.  To our dismay, computing professionals are only recently realizing that this same 
principle applies equally well to the Windows/IE/Outlook monoculture.7

The evolution of multi-cell systems
The transition from single-cell to multicellular life did not happen on one sharp step.  We do not 
know with much precision when and how the strategies that survive today arose nor what 
alternatives were tried and failed.  All we know is that what we see today survived the test of 
time.

From our current perspective it appears that multicellular life evolved from single cells in two 
stages.  First, single cell organisms evolved the ability to form loose cooperative communities, 
often called biofilms,8 that can perhaps be thought of as “training wheels” for multicellular life. 
The earliest colony bacteria were the cyanobacteria that evolved more than three billion years 
ago. Their fossil remains are visible today because colonies of cyanobacteria secreted a thick gel 
as protection from solar radiation unattenuated by an atmosphere that lacked ozone. This gel, in 
turn, trapped sand and debris from the surf which, together with lime secreted by the bacteria, 
formed the beautiful patterns of the Stromatolite fossil reefs visible in Australia. These structures 
are highly variable in size from twig-size to semi-truck size.9  Biofilms remain common today. 
Present-day examples of biofilms include slime mold, dental plaque, films on rocks in streams 
and many more.

About one billion years ago true multicellular organisms formed – plants, animals, and fungi – 
known generically as Metazoans.  All cells in a Metazoan organism share the same DNA.  As the 
organism develops, the cells specialize by sequestering and permanently silencing much of their 
DNA according to developmental genetic programs.  Some organisms have multiple stages of 
stable forms, e.g., insects that exhibit larval, pupae, and adult forms.  But these developmental 
stages all involve programmed cell differentiation.  For most cells, some stem cells being the 
exception, differentiation is dramatic and irreversible.  The full complement of genes and DNA 
control sequences in the multi-cellular genome is far more complex than that of single cell 

7 See http://www.wired.com/news/privacy/1,62307-0.html  and  S. Forrest, A. Somayaji, and D. Ackley, 
“Building Diverse Computer Systems,” Proceedings of the 6th Workshop on Hot Topics in Operating 
Systems (HotOS VI), May 5–6, 1997, p. 67.
8 www.erc.montana.edu/CBEssentials-SW/bf-basics-99/bbasics-bfcharact.htm
9 From  www.fossilmuseum.net/Fossil_Galleries/Stromatolite_fossil_gallery/Stromatolite_fossils.htm
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organisms.  But any given type of cell in a multicellular organism – and there are about 250 
different types in humans – is functionally much simpler than free-living single cell organisms. 
“Each differentiated cell type only makes the proteins coded for by a few percent of the 50,000 
total genes.”10  For example, all cells in the body have the gene for hemoglobin, but only red 
blood cells express it.

Conventional wisdom asserts that the primary benefit of multicellularity, hence presumably what 
drove its evolution, is the division of labor, or specialization, provided by differentiated cells.11  
But differentiation evolved slowly.  Prior to the emergence of differentiation there was a more 
temporary form of specialization in cooperating communities of single-cell organisms (biofilms); 
there was polymorphic messaging between genetically identical cells (e.g., quorum sensing); 
there was programmed cell death (apoptosis); and there was (stigmergy).12  And, as we will see 
later in this paper, the mechanisms that support specialization, messaging, stigmergy and 
apoptosis are intimately intertwined. So the notion of a "primary" benefit is misleading.

The evolution of multicellular computing shows interesting parallels to that of multicellular 
organisms.  Early large-scale distributed network computing began when personal computers 
were used as terminals to mainframes in place of dedicated terminals.  As more “smarts” 
migrated from the mainframe to the terminal, the interaction between client and server became 
richer and more varied.  Now we see loosely organized general-purpose computers in web 
communities, P2P file-sharing, and ad hoc compute grids such as SETI at home.  These loosely 
organized communities are comparable in complexity and organization to biofilms. Some Grid 
architectures are more formal and specialized and therefore are perhaps analogous to simple 
Metazoa such as the hydra or perhaps small jellyfish. As computing continues to evolve, I 
confidently assert that specialization will increase, messaging will become ever more elaborate, 
stigmergy structures will proliferate and become ever more economically important, and 
apoptosis-like mechanisms will evolve to shut down or disconnect computers infected by viruses 
and worms.  In other words, computing will adopt architectures more akin to multicellular 
biological organisms.

10 See www.bio.unc.edu/courses/2003spring/biol104/lecture8.html  Note that since this was written the 
estimate of the number of human genes has dropped to less than 25,000.  The principle remains the same.
11 See Maynard Smith, J. & Szathmáry, E. The Major Transitions in Evolution, 1995.  Or Pfeiffer and 
Bonhoeffer, PNAS, 2003, http://www.pnas.org/cgi/content/full/100/3/1095.
12 The terms quorum-sensing, apoptosis, and stigmergy are discussed in more detail later in the paper
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Know your enemy: characterizing complexity13

A crucial similarity between the evolution of living systems and that of computing systems is the 
way they become ever more complex.  But just what does that mean?
There have been attempts by heavyweights such as Andrei Kolmogorov, Gregory Chaitin, 
Charles Bennett, and Stephen Wolfram14 to rigorously and formally define complexity.  Each of 
those attempts has captured some properties of complexity but none capture it in a general way. 
Given that we can't satisfactorily define complexity, it should come as no surprise that we cannot 
satisfactorily measure complexity in a general way either.15  So, what could it mean to say that 
evolving complex dynamic systems have a habit of becoming more and more complex?  Without 
stepping into the deep waters of trying to define complexity, let me say that such systems become 
less and less predictable without becoming more random.16

We tend to think of complexity as more intricacy than we can comprehend.  That describes only 
one sort of complexity, often called detail, structural, or static complexity.  Another sort of 
complexity, typically called dynamic complexity, is inherent in the systems themselves, not in the 
limits of human comprehension.  This second sort of complexity emerges naturally in systems 
that evolve over time as a function of their operation: e.g., meteorological, cosmological, 
biological, ecological, geological, social, economic, or computing systems.17

Both sorts of complexity bedevil us in our computing systems.  We struggle with static 
complexity such as program source code and database schema that define structural relationships 
between networks of interacting elements.  These structural descriptions typically become so 
intricate that they exceed our cognitive ability to understand them. Dynamic complexity is 
qualitatively different; it is about what happens at runtime as the behavior of a system, e.g., a 
computer program, unfolds via interactions between elements.

Emergent behavior in complex dynamic systems
Consider a flock of starlings for example.  The birds attempt to stay in the flock while avoiding 
collisions with other birds.  The turns and twists each bird makes while satisfying these goals 
affect the paths of many nearby birds which, in turn, affect the paths of still more birds.  Thus the 
dynamics of the flock as a whole are complex and inherently unpredictable.  Yet anyone who has 
watched flocks of starlings can see clearly that the behavior of the flock is not random.  Note that 
this sort of complexity has nothing to do with human cognitive limits.  It arises from the 
distributed nature of the task the birds face and the different perspective each bird has.

Unexpected behavior emerges by the continued action of positive feedback in complex systems. 
Consider an example of positive feedback that is familiar to most of us: a microphone induces a 
loud squeal from a speaker when the microphone gets too close to the speaker or the amplifier 

13 This section on complexity benefits greatly from many conversations over the years with my long-time 
colleague, collaborator, and co-author Sam Adams.  He is a Distinguished Engineer in IBM Research.
14 See www.complexsystems.org/commentaries/jan98.html or 
www.nctimes.net/~mark/bibl_science/complexity_ben.htm
15 See cscs.umich.edu/~crshalizi/notebooks/complexity-measures.html, and “What is complexity,” 
Christoph Adami, BioEssays 24:1085-1094, Wiley Periodicals, 2002.
16   We lack satisfactory definitions and measures of randomness too, so I use that term somewhat loosely.
17 There is a brief but useful discussion of the two types of complexity available at 
http://www.stewardshipmodeling.com/dynamic_complexity.htm
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gain is turned up too high.  The positive feedback occurs because the sound picked up from the 
microphone is amplified, sent out through the speaker and returns to the microphone to be picked 
up louder than before.  Once you understand the mechanism, it seems unremarkable and 
controllable.  To kill the squeal, simply move the microphone farther from the speaker or turn 
down the amplifier gain.

Similar, though less manageable, positive feedback tends to emerge in random networks.  As a 
thought experiment, consider a large open space, say a football field, on which a hundred 
speakers, amplifiers and microphones are placed randomly.  Now, begin adding connections 
(wires), one at a time, between a randomly chosen microphone and amplifier or randomly chosen 
amplifier and speaker.18  Sooner or later, a squeal will arise because a speaker happens to be close 
enough to the microphone that feeds it.  Let us call that trio an autocatalytic set, i.e., a self-
reinforcing set of elements that produces an emergent property of the system (the squeal). 
Adding more wires will soon create a second squeal, and a third, and so on. There tends to be a 
threshold beyond which new feedback loops are created very rapidly and shortly thereafter nearly 
all the speakers will be emitting squeals.  Because the output of any given speaker reaches more 
than one microphone, some of the autocatalytic sets (i.e., feedback loops) may involve more than 
one microphone/amplifier/speaker trio and, by the same token, a given speaker or microphone 
may be participating in more than one autocatalytic set, i.e., emitting multiple squeals at different 
pitches (the pitch of each squeal is determined by the speed of sound and the distance between the 
speaker and the microphone that generate the feedback).

In 1965, Stuart Kauffman did a more formal experiment analogous to the speakers on the football 
field using random Boolean nets in a computer simulation.  He discovered, to his surprise, that 
autocatalytic sets (called state cycles in these Boolean nets) inevitably emerge very quickly and 
the number of autocatalytic sets that emerge is roughly the square root of the number of elements 
in the Boolean network.19  More generally, mutually reinforcing feedback loops form in all sorts 
of complex systems.  The probability of the emergence of autocatalytic sets increases as more 
elements are added, more interconnections are added, or the elements themselves become more 
complex and therefore can interact with others in more complex ways.  Familiar natural examples 
include:

• Sand dunes form from the simple interactions of very large numbers of grains of sand with 
each other and with the wind.  If there is enough sand being blown by the wind, any 
obstruction can start the formation of a dune: a bush, a fence post or even an ant hill. If the 
pile of sand is large and steep enough to create a “wind shadow,” more sand will collect in 
the shadow, enlarging the pile.  Given a sufficient supply of sand and wind, the emerging 
sand dune may eventually grow to more than 300 meters in height and move as much as 20 
meters per year.  In North China and the Sahara, sand dunes threaten to engulf entire towns.

• Money, in the form of chunks of metal or cowrie shells, emerged as early as 5000 BC.  But 
money became really useful once coins with specific values, i.e., denominations, emerged 
about 700BC in Lydia (now a part of Turkey).  Before coins were minted, commerce was 
done by barter, which limited commercial exchanges to pairs of people who desired what the 
other had (or perhaps three-way exchanges that were very difficult to arrange).  Coins 
allowed a new kind of commercial interaction between people, one in which the money 

18 Note: since this is an abstract thought experiment, we allow multiple microphones to feed the same 
amplifier, a microphone to feed multiple amplifiers, and an amplifier to feed multiple speakers.  We also 
ignore the likelihood that, in real life, amplifiers may blow fuses and speakers may shred themselves.
19 For an easily read discussion, see Chapter two of Complexity: Life at the edge of chaos, by Roger Lewin, 
1992l, Macmillan Publishing Co.  Kauffman has developed these ideas into a theory, more formally known 
as NK Systems.  See S. A. Kauffman. The Origins of Order: Self-Organization and Selection in Evolution, 
Oxford University Press, New York, 1993.
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provided an agreed upon temporary store of value that was specific neither to a particular 
commodity or service, nor to a specific place and time.  Feedback arose because, as the 
benefits of using money were made clear, more coins were minted which allowed those 
benefits to be experienced by more and more traders.  Within two hundred years, the idea of 
using coins with specific denominations had spread as far as China.  Commerce was changed 
forever.

• In computing, TCP/IP and HTTP protocols create new sorts of interactions between 
computers.  The Internet emerged from TCP/IP and the Web emerged from HTTP.  P2P 
protocols are another example.  They supported the emergence of Napster and its descendents 
that now threaten to obsolete the music recording industry.  These sorts of systems grow 
because of positive feedback known as the “network effect.”  That is, as the network grows it 
becomes more attractive for others to join the network.  Telephones and fax machines are the 
usual example of prototypical positive feedback network effects.

It is important to note that emergent behavior is qualitatively different from that of its elements. 
Sand dunes are far different from grains of sand, both in scale and in behavior.  A marketplace 
based upon money is qualitatively different from one based on barter because prices emerge that 
create relationships between all goods and services.  More specialized goods and services can 
participate on an equal footing with everyday commodities.  Similarly, the emergent behavior 
called the Web is dramatically different from communities that swap files by FTP even though 
the technical differences between FTP and HTTP are relatively minor.

How many elements are required for emergence? The answer depends upon the complexity of the 
elements and their interactions. Unexpected behavior can emerge from a large number of very 
simple elements (a sand dune) or a small number of interacting elements if their interactions are 
rich and they are sufficiently adaptable.  At the extreme of complexity -- human beings -- two is 
enough. Anyone who has been in a long-term relationship can attest that a couple is more than the 
sum of the behavior of the two individuals. Interactions less complex than a marriage require a 
few more individuals, e.g., human behavior in crowds. Small flocks of birds or schools of fish can 
also provide surprising collective behavior.  And, as every programmer has discovered, even 
small software systems all too often demonstrate surprising emergent behavior (bugs).

At a higher metalevel, i.e., where the elements themselves are complex dynamic systems, 
interactions can be richer.  Relatively small sets of more complex elements can create astonishing 
emergent behavior

• Brains -- Neurons are much smaller than grains of sand yet their interactions are far 
richer because each neuron is itself a complex dynamic system. Neural "circuits" of only 
a few hundred to a few thousand neurons can produce amazing behavior. The entire 
central nervous system of small free-living metazoans such as rotifers and nematodes has 
less than 300 neurons. The entire nervous system of Aplysia (a molusc) contains 18-20 
thousand neurons. These animals aren't noted for their intellectual gifts, yet their 
behavioral repertoire is far greater and more "purposeful" than a hurricane or a sand 
dune: they seek food, avoid danger, mate, and learn.

• Computers -- The earliest computers had a few thousand gates and programs with a few 
thousand machine instructions. While their planned emergent behavior was primitive by 
today's standards, they still could calculate artillery ballistic tables, prime numbers and 
the like.  And unplanned emergent behavior (bugs) popped up even then. In modern 
computers with upwards of a billions gates and hundreds of millions of lines of code, the 
behavior, both planned and unplanned, is beyond our comprehension.
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Multi-level complexity
When stable autocatalytic sets of interacting elements emerge, the sets themselves inevitably 
begin to interact with one another.  For example, denominated coins supported the abstract notion 
of placing a numeric value, or “price” not only upon a cow or basket of wheat, but also upon an 
arbitrary set of assets, goods, and services that are otherwise incomparable.  So a set of goods can 
become an atomic element to be traded.  This allowed us to form banks (around 400 BC) and to 
assign a value to an entire ship and its cargo for the purpose of investment and risk sharing.20 

Similarly, a company (or eventually a corporation) that can own ships or cargoes can also be 
assigned a price.  Valuing companies and other long-lived collective enterprises gave rise in the 
Middle Ages to stock markets, known as bourses, which treat the value of shares in a whole 
company as atomic elements to be traded. Various modern derivatives markets, in turn, treat 
whole market indexes, e.g., the S&P 500, as the atomic elements upon which another level of 
trading, such as index futures, can be constructed.  Each new level is built upon the one before 
and, in turn, becomes the atomic elements from which the next level can emerge.  

This issue of multi-level emergence is especially important to the present paper for at least two 
reasons: 1) because both life and computing have resulted from layer after layer of emergent 
phenomena so the similarities should be instructive; and 2) because multi-level emergence poses 
severe, sometimes insurmountable, challenges for the predictability and manageability of the 
resulting systems.  To understand how those layers, or meta-levels, interact, it is worth going into 
some detail on their emergence over time.

The many successive levels of emergence that led to the life on the planet Earth today cannot be 
known precisely.  The short story, as best science can say today, begins at the “big bang.”  A 
couple of seconds after the big bang, the universe was a dense sea of solitary neutrons, protons, 
electrons, positrons, photons and neutrinos.  As the universe expanded and cooled over a few 
hundred thousand years, many of these particles joined into the stable autocatalytic sets we call 
atoms – mostly hydrogen atoms with some helium and a tiny admixture of the next lightest 
nuclei: deuterium, lithium and beryllium.21  Perhaps 600 million years pass until gravity 
interactions generate the third level organization: galaxies and stars.  Inside stars gravitational 
pressure and temperature ignite fusion reactions in which small, light nuclei fuse together to 
create the larger, heavier nuclei of elements up to iron, including elements needed for life as we 
know it such as carbon, oxygen, nitrogen, sodium, potassium, calcium, etc.  But fusion cannot 
create elements heavier than iron. More esoteric “neutron capture” reactions create the remaining 
elements, some of which are crucial to life.22  The violent death of stars in supernovas spews all 
these newly created elements out into interstellar space.  Time passes, stellar dust from 
supernovas again condenses by gravitational attraction to form second generation stars that have 
planetary systems with the full complement of chemical elements needed for rock, water, air and, 
ultimately, life. Time passes and one such planet – the earth – slowly cools to temperatures that 
can sustain life..  All sorts of autocatalytic chemical reactions in the earth’s oceans and 
20 “At Athens, hundred of ship cargoes were required annually to satisfy Attica's enormous need for food 
and other items. Virtually all of these cargoes were dependent on loans. These financings, together with the 
additional loans generated by the Piraeus's dominant position as an entrepôt for the eastern Mediterranean, 
provided creditors with an opportunity to absorb over many transactions the risk of a total loss from the 
sinking of a single ship.”  (See Cohen, Edward E. 1992. Athenian Economy and Society: A Banking 
Perspective. Princeton University Press, Princeton, pp. 140-141.)
21 (See: www.brainyencyclopedia.com/encyclopedia/t/ti/timeline_of_the_big_bang.html).  Note: this short 
story ignores the first couple of seconds after the big bang in which matter/anti-matter annihilated each 
other, and stable sets of quarks become neutrons and protons.  
22 For example, nickel, copper, molybdenum, zinc, tin, iodine.  Zinc, for example, is crucial to many DNA 
binding proteins that control gene expression.
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atmosphere create the early organic carbon-based compounds that slowly combine to create 
successively larger and more complex organic compounds.23  Natural processes create small 
bilipid membrane vesicles filled with water and complex sets of organic chemicals.24  They are 
reminiscent of simple cells, but aren’t alive, i.e., they cannot gather energy from the outside 
world nor can they replicate.  Perhaps 3.8 billion years ago, unexplained “magic”25 creates 
mechanisms for replication that allows the emergence of simple single-cell life.  For a couple of 
billion years, single cell organisms evolve dizzying complexity in many steps: absorbing 
mitochondria and chloroplasts, creating the nucleus, and so forth.  Perhaps 3.5 billion years ago, 
cyanobacteria evolved physically co-located cooperative structures held together by sticky 
secretions from the cells (e.g., gel or slime).  These cooperative cyanobacteria are believed to be 
responsible for the conversion of the early carbon dioxide atmosphere to the oxygen-rich 
atmosphere of today.  Finally true multicellular (Metazoan) organisms form sometime between a 
billion and 600 million years ago.26

All of the levels described above are evident in every living cell or organism today.  The 
biochemistry that emerged in the Earth’s oceans clearly operates in every cell.  Virtually all of the 
energy used by every living cell comes from nuclear fusion in the sun via photosynthesis in 
plants.  All the hydrogen in cells was created in the big bang itself.  The heavier elements were 
created in stars and supernovas.  And many of the random events that generate novel mutations 
that evolution can exploit are due to UV radiation from the sun, cosmic rays from distant 
galaxies, and occasionally even neutrinos from the big bang itself.  So, every one of the dozen or 
so layers of emergent behavior still participate in a great cosmic dance, one small figure of which 
is Earth’s biosphere containing all the species of living organisms.

The evolution of computing is much shorter and better known.  Modern computing began during 
World War II to facilitate code breaking and computation of artillery ballistics. Carefully 
constructed sets of vacuum tubes, resistors, and capacitors with positive bi-stable feedback 
became the first logic gates.  At first, these gates were wired together by hand to perform higher-
level logic and arithmetic functions.  Soon, the notion of a machine instruction emerged. 
Machine instructions represent coordinated sequences of gate changes with predictable results. 
Early programs were carefully crafted sequences of machine instructions that exploited very 
clever (and today verboten) kinds of self-modifying code.  As we learned more about 
programming, we created reusable sub-routines or functions, i.e., sets of machine instructions that 
can be treated as a unit, again, typically with predictable results.  The first levels of code 
abstractions appeared: assembly language and compiled COBOL, FORTRAN and soon 
thereafter, ALGOL.  At that stage a program ran on the bare metal without an operating system, 
I/O drivers, or other abstraction layers. The program finished when the computer halted, which 
was made obvious when all the blinking lights on the operator’s panel froze although, given the 
unreliability of the early machines, frozen lights all too often simply signaled a hardware failure 
or a program bug. It should also be noted that, at that stage, programs were crafted for a single 
machine.  Without any layers of abstraction between the program and the hardware, a program 
was unique to that machine.  So each of the relatively isolated and rare computers attracted a 
group of computing people – amateurs of course; it would be years before computing became a 
profession27 – that explored what the computer could do and shared their techniques and code.  As 

23 For example, carbonyl sulfide (COS), a simple volcanic gas, induces the formation of polypeptides from 
individual amino acids in water solution.  Science, vol 306, 8 October, 2004, pp. 283-286.
24 See www.msu.edu/user/ottova/chap1.html
25 We don’t know the steps that led to the evolution of the fantastic mechanisms of RNA, DNA, protein, 
etc. that support replication, hence life.  I use the term “magic” simply to reflect our ignorance.
26 The time is very imprecise because the earliest metazoans were probably small, soft, creatures like hydra 
that did not leave fossils, 
27 The first issue of the Communications of the ACM was published in January, 1958.
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computers became more alike and people began using computers for more routine tasks, 
operating systems emerged as did outboard I/O processors, databases and other kinds of 
middleware.  The previously separated communities of computer people had much to share with 
one another.  The emergence of minicomputers and then “microcomputers” (which morphed into 
PCs), based on the early microelectronic CPU chips, opened computing up to the rest of us and 
completely changed the common notions of what a computer was for. The rapid decrease in 
price/performance due to Moore’s Law continued the expansion of computing into new areas and 
in unheard-of numbers.  In the mean time, in the ‘60s, the early efforts to connect computers 
arose.  Rather than moving rolls of paper tape, boxes of punch cards, or reels of magnetic tape 
from machine to machine, it would be convenient to send data over a wire.  This line of evolution 
eventually led to the ARPAnet in the early ‘70s, which led to the modern Internet.  And, finally, 
in 1989-1991, Tim Berners-Lee and collaborators proposed and built a combination of HTTP, 
HTML, and a crude browser that became the World Wide Web.  All of these emergent levels, 
from individual gates (now made with microscopic transistors on silicon wafers rather than 
vacuum tubes) to collaborating web services, participate in our everyday experience of 
computing.

What is amazing is that the evolution of the “virtual” world occurred so rapidly.  Computing had 
become so complex by the ‘70s (a mere three decades after the first general purpose computer) 
that different threads of evolution – hardware, software, networking, and cultural/economic – 
were operating separately but in parallel, dependent upon each other and reinforcing each other in 
completely unexpected ways.  Finally, in the mid 90’s, the Internet/Web and the dot.com boom 
supercharged the evolution of computing by driving it into every nook and cranny of modern 
culture.  We now see amusing consequences such as adults asking their middle-school kids to 
help them with some computer problem, or business executives with expensive laptops that are 
considerably less powerful than their kid’s three hundred dollar game box.  Many of us walk 
around with one or two computers more powerful than a 1960 mainframe in our pockets. And 
some of them such as cell phones and pocket email devices are hooked to the Internet at least 
intermittently.  Now human society, arguably the pinnacle of the evolutionary path that evolved 
step by step from atoms, is influenced as much by bits as by atoms.  That is, the evolution of life  
and the evolution of computing are merging, bringing the complexity of both realms together in 
completely unpredictable ways.

The “three-level rule”
In order to predict and manage the behavior of multi-level complex systems, we must be able to 
reason about how cause-and-effect crosses the levels.  Unfortunately, there are cognitive, and 
even physical, limits to our ability to trace cause-and-effect through multiple levels. We can focus 
on the elements of one particular level and contemplate the “part/whole” relationships in two 
directions.  For example, we can think about how the elements, say molecules or machine 
instructions, are made up of atoms or orchestrated gates and how the properties of those atoms or 
gates affect the properties of the molecules or instructions.  With a switch of cognitive repertoire, 
we can also contemplate how the molecules interact with other molecules to form crystals or 
participate in various chemical reactions or how machine instructions cooperate to carry out a 
function or subroutine.  A skilled practitioner – a chemist or programmer – may be able to think 
about interactions in both directions at once.  That is, a skilled practitioner may be able to reason 
simultaneously about three levels of abstraction.  But it is quite difficult and seldom even useful 
to do so.  Reasoning about four levels of abstraction at one time is, arguably, beyond the ability of 
the human mind.
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Unpredictability in multi-level complex systems
Cause and effect in complex systems does not necessarily reach across levels.  For example, 
except for exceedingly rare interactions with neutrinos, the quarks that collaborate to form 
protons and neutrons interact solely with each other; only their collective mass, charge, and 
strong nuclear force has external effects.  Quarks are an extreme example of isolation, but both 
evolved and designed systems tend to use mechanisms to restrict interactions simply because 
unrestricted interactions tend to devolve to chaos.  Most of the chemicals inside a living cell are 
isolated from the external environment by cell walls and perhaps also isolated within internal 
organelles.  Modern computers are designed to prevent the inappropriate reading, writing, or 
execution of memory contents.  Firewalls seek to prevent inappropriate interactions between 
computers over Internet connections.  And so forth.

Nonetheless, most systems, certainly most biological and computing systems, are inherently 
multi-level systems in which some of the complexity within a level is, and often must be, exposed 
to the level above and/or the level below.  Tracking cause and effect through these sorts of 
multiple levels is exceedingly difficult and often impossible.  The details of a hurricane or 
tornado are fundamentally not explainable by invoking the physics of individual air and water 
molecules.28  Nor can a computer be understood by pondering the behavior of electrons, or logic 
gates.  Similarly, the behavior of even a single cell cannot yet be predicted by understanding its 
chemistry at a molecular level.  We also intuitively recognize these sorts of limits and their 
consequences for predictability in business, social, economic and ecological spheres.

Occasionally, multi-level phenomena become explicit and our inability to manage them has 
profound, and usually unpleasant, consequences.  For example, pharmaceutical drug discovery is 
a biochemical discipline in which we face many levels of complexity between the “cause” and the 
“effect.”  We seek to find a small-molecule, i.e., a drug, that modulates an intracellular 
biochemical pathway in a way that desirably affects the human body (or even the human mind, 
e.g., anti-depressants) yet does not affect any other cellular process in a deleterious manner.  The 
major reason it is so difficult to find drugs and even more difficult to determine that they are safe 
and effective is that there are so many levels of complexity between intracellular chemical 
reactions and whole-body effects and side-effects.  Similarly, in the computing realm, multi-level 
problems account for some of the most recalcitrant bugs we face.  Perhaps the most egregious 
example in computing is the prevalence of buffer-overrun exploits in Windows.  A buffer-
overrun takes place, essentially, at the machine language level, i.e., the necessary code for array-
bounds checking translates to perhaps a dozen extra machine instructions.  Yet the effects of 
buffer-overruns can be Internet-wide.  The “SQL Slammer” denial of service worm that slowed 
or blocked 80% of all Internet traffic for a few hours January 25th, 2003, was due to a buffer-
overrun in Microsoft SQL Server software caused by a handful of ill-considered machine 
instructions.29

28 Weather is inherently very sensitive to initial conditions.  Since the motions of the underlying molecules 
are random and obey Heisenberg’s Uncertainty Principle, there is a limit to the detailed accuracy with 
which it can be predicted.
29 See www.byteandswitch.com/document.asp?doc_id=27509.  Programmers allow buffer-overruns in part 
because of laziness or incompetence, but also out of a misplaced concern for saving the few CPU machine 
cycles (a few nanoseconds on a 2-GHz processor) needed for bounds-checking array references in C code. 
That misplaced concern threatens the entire Internet, which is a dozen levels of abstraction above the 
machine language level.  This is the epitome of “penny-wise and pound-foolish.”
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Constraints on freedom to evolve
Interactions between levels can constrain the possible evolutionary paths of adjacent levels. 
Every level other than the “highest” is at least somewhat constrained to evolve more slowly 
because changes that invalidate an implicit “contract” with the higher level tend not to survive 
long.  Thus, single-cell organisms (and viruses) can mutate rapidly because their behavior is 
relatively free from higher-level constraints.  Individual cells within multi-cell organisms are not 
so free to explore new behavior.  Similarly, unconnected digital devices (PDAs or cell phones for 
example) change at a dizzying pace whereas PCs and servers become more powerful and cheaper 
but must generally retain the ability to run almost all applications from the prior generation.  In 
multicellular computing, we see most innovations happening at the highest level where new kinds 
of collaboration are being proposed every month.  These innovations seldom require changes to 
the underlying ecology of computers, operating systems, or Internet/Web protocols.  Those that 
do, tend to fail.
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Principles for managing multicellular systems
Our computing systems are recapitulating the evolution from single-cell to multicellular life.  The 
above discussion was intended to show that we might profitably look at living systems for 
strategies that could apply to computing.  The thesis of this paper is that multicellular life exploits 
four broad strategies – see table below – that 1) are rare in single cell organisms, 2) are nearly 
universal in multicellular organisms, and 3) evolved before or concurrent with the emergence of 
multicellular life.  Subsequent sections examine each of these strategies in some detail for insight 
into how we might use their analogs to help manage the further evolution of computing.

Table 1.  The four broad strategies

Multicellular Organisms Networked Computing

Specialization 
supercedes 
general 
behavior

Cells in biofilms specialize 
temporarily according to “quorum” 
cues from neighbors.

Cells in “true” multicellular 
organisms specialize (differentiate) 
permanently during development.

Today most computers, especially 
PCs, retain a large repertoire of 
unused general behavior susceptible 
to viral or worm attack.

Biology suggests more 
specialization would be 
advantageous.

Communication 
by polymorphic 
messages

Metazoan cells communicate with 
each other via messenger molecules, 
never DNA.  The “meaning” of cell-
to-cell messages is determined by the 
receiving cell, not the sender.

Executable code is the analog of 
DNA. Most PCs permit easy, and 
hidden, download of executable 
code (Active-X, java, or.exe).

Biology suggests this should be 
taboo.

“Self” defined 
by a stigmergic 
structure

Metazoans and biofilms, build 
extracellular stigmergic structures 
(bone, shell, or just slime) which 
define the persistent self.

“Selfness” resides as much in the 
extracellular matrix as in the cells.

Intranets and databases are 
stigmergy structures in the world of 
multicellular computing, as are 
many Web phenomena such as 
search engines, folksonomy sites, 
wikis and blogs.  But they are ad 
hoc structures.

Stigmergy and definition of “self” 
needs to be more systematic.

“Self” protected 
collectively by 
programmed 
cell death 
(PCD), or 
Apoptosis

Every healthy Metazoan cell is 
prepared to commit suicide -- a 
process called apoptosis.

Apoptosis reflects a multicellular 
perspective - sacrificing the 
individual cell for the good of the 
multicellular organism.

A familiar example in computing is 
the Blue Screen of Death which is a 
programmed response to an 
unrecoverable error.

A civilized metazoan computer 
should sense its own rogue 
behavior, e.g., download of 
uncertified code, and disconnect 
itself from the network.
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Specialization and differentiation
Specialization is a general characteristic of multi-level biological systems that supports a useful 
trade-off in complexity; “...in evolution, as higher-level entities arise from associations of lower-
level organisms, and as these [higher-level] entities acquire the ability to feed, reproduce, defend 
themselves, and so on, the lower-level organisms will tend to lose much of their internal 
complexity.”30  This principle appears to apply to social insects as well.  For example, 
“...individuals of highly social ant species are less complex than individuals from [socially] 
simple ant species.”31

Specialization begins at the level of individual cells in multicellular organisms.  Bacterial cells 
capable of participating in biofilms (cooperative communities of single-cell organisms) can 
usually also live as isolated cells.  But when the single-cell organisms participate in a cooperative 
biofilm, they temporarily specialize.  Metazoan cells, i.e., the cells in “true” multicellular 
organisms, don’t just temporarily specialize, they permanently differentiate as the organism 
develops from a fertilized zygote to an adult.  “The different cell types in a multicellular organism 
differ dramatically in both structure and function. If we compare a mammalian neuron with a 
lymphocyte, for example, the differences are so extreme that it is difficult to imagine that the two 
cells contain the same genome." 32  Occasionally, through some mischance, a cell loses some of 
its differentiation.  The cells in which this occurs are called neoplastic (i.e., newly changeable).  
Neoplastic cells are not just abnormal, they are a forerunner of cancer.

Specialization is possible because the environment faced by a cell in a multicellular organism is 
quite different from that faced by a single-cell organism.  Metazoan cells live in a cooperative 
homeostatic environment protected and nourished by the whole organism.  In contrast, a single-
cell organism must be prepared to deal with all sorts of unfavorable environments.  That 
flexibility requires a large repertoire of behavior.  E coli, a commonly studied bacteria, can use 
flagella to move toward nutrients and away from toxic chemicals.  But they only create these 
flagella when they need them.  If they are in a favorable environment, they dispense with flagella. 

Specialization is necessary because maintaining the full complement of all possible behavior is 
costly and/or dangerous.  For individual cells, one obvious cost is in energy consumption; the 
maintenance of all the unnecessary cellular machinery is not free.  Since specialized Metazoan 
cells use only a small fraction of the total genome, their energy costs are dramatically reduced. 
But also cell specialization induces very different and incompatible cell chemistry, shape, and 
function.  A nerve cell could not function as a reliable communication channel between point A 
and point B if it also builds bone around itself, fills itself with hemoglobin for carrying oxygen, 
accumulates fat, and secretes stomach acid.  Specialization is also necessary to reduce the number 
and type of messages to which the cell can respond.  There are thousands of different types of 
molecular messages active in a complex multicellular organism.  Each cell responds to only a 
small subset.  It would be worse than meaningless for a cell to retain the ability to respond to all 
these messages – it would be chaos.  A general-purpose cell also would be susceptible to all 

30 A Complexity Drain on Cells in the Evolution of Multicellularity,  McShea, D. W., Evolution, Vol 56, 
No. 3 Pages: 441-452, 1997.  And, “The hierarchical structure of organisms: a scale and documentation of a 
trend in the maximum.” McShea, D.W.,  Paleobiology 27:405-423, 2001.
31 “Individual versus social complexity, with particular reference to ant colonies,”  Anderson, C & McShea, 
D. W.  Biol. Rev., vol 76, pp. 211-237, 2001.  Note: the individual ants of highly social species are not only 
less complex, but more specialized and more varied in size and shape.  Yet, as with specialized metazoan 
cells, they all have the same genetic complement.
32 See “An overview of Gene Control” at 
www.ncbi.nlm.nih.gov/books/bv.fcgi?tool=bookshelf&call=bv.View..ShowSection&searchterm=control&r
id=cell.section.1981
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viruses.  Viruses infect a cell by binding to surface proteins.  Since different surface proteins 
characterize different specialized cells, each kind of virus can infect only certain types of cells. 
The cold virus infects cells in the nasal passages, the hepatitis virus infects certain liver cells, the 
HIV virus infects certain cells in the immune system, and so forth.  If every cell expressed all cell 
markers, any virus could bind to and infect all cells.  Catching a cold would be fatal.

Finally, specialization is deeply intertwined with the other three principles.  The orchestration of 
many kinds of simpler specialized elements requires a polymorphic messaging strategy in which 
each specialized cell may interpret received messages differently.  Moreover, the existence of a 
higher-level entity with a physically co-located body or social group requires an additional sort of 
communication strategy, called stigmergy, in which messages are attached to specific locations in 
the body, or colony.  And, because cells that have for some reason lost their specialization are 
dangerous to the organism as a whole, all cells must be capable of programmed cell death, or 
apoptosis.

Specialization in computing
Computers too are becoming more specialized both in hardware and in software.  Routers are 
specialized for bandwidth and, increasingly, for different quality of service.  Data base servers are 
specialized for I/O, caching, and query.  Web servers are specialized for small transactions and 
throughput.  Computational engines such as Linux clusters and the even more specialized 
machines such as IBM’s BlueGene are specialized for parallel operation and FLOPS.  Portable 
devices such as PDAs, cell phones, and MP3 players are specialized for low power and long 
battery life.  Game boxes are specialized for rapid graphics calculations.  And the many 
embedded devices such as those in cars are further specialized for reliability, durability, precise 
real-time control, and the like.
Specialization in computing is possible for at least two reasons.  First, because the various roles 
computers are asked to play in modern life have become more specialized.  The role of a router is 
nothing like the role of an iPod.  The computing industry continues to provide more options in 
both hardware and software at different costs.  CPU chips vary in cost from less than a dollar to 
several hundred dollars depending upon speed, function, and power usage.  Different types of 
memory, disk, display, and communications are also available at different prices.  Software 
options affect costs too.  For example, the PalmOS, which is popular for PDAs and some cell 
phones, requires considerably less compute power and memory than its Windows CE competitor.  
Hence a Palm PDA can last longer on a battery charge than a WinCE PocketPC device.  Software 

royalties are also a direct cost that can be avoided, e.g., by using Linux.  The second reason 
specialization is possible is the growing multicellularity of computing – specialized computers 
can rely on other specialized computers for services it does not provide itself.  No longer does 
one computer have to do everything.  That's the point of Service Oriented Architectures (SOA).

Specialization is necessary for at least three reasons.  First, many of the specialized requirements 
are incompatible.  A PDA or cell-phone, for example, must run on minimum battery power 
whereas a computation engine must expend power with abandon in order to maximize FLOPS.  
Second, excess generality, especially in software, imposes costs on the manufacturer in terms of 
size of the software engineering team needed for development and maintenance.  Software that 
supports a larger than necessary set of functions also lengthens time-to-market, is almost 
inevitably more buggy, and thus requires a larger and more expensive customer support staff.  
Finally, the more function a system supports, the larger the “surface area” exposed to attack by 
viruses, worms, spyware, sniffers, and other malware.  It is no accident that most "malware" 
enters our systems by first infecting a general-purpose end-user PC.
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Factors opposing specialization
At first blush, there appears to be one glaring exception to increasing specialization in 
computing.  Windows PCs continue to agglomerate all possible function.  That is deceptive. 
Windows is the pinnacle of single-cell computing, not the basis of multicellular computing. 
Windows is specialized for the goal of maintaining its monopoly by being all things to all 
people.  Microsoft’s acknowledged ambition is to have Windows functionality, APIs and 
proprietary protocols in every server, PC, cell phone, PDA, MP3 player, and game box on the 
planet.  The very opposite of specialization.  As the evolution toward multicellular computing 
gains speed, that ambition is doomed!  An API compatible Windows for all these applications 
is required to support a wide range of general behavior, making it difficult to specialize and 
making it a large monoculture that is a ripe entry point for Internet viral and worm infections. 
Windows supports a rich ecology of third-party applications that rely on the large Windows 
marketplace as well as the Windows API.  That ecology is strongly supported by many 
programmers who have, at great cost in time and effort, learned how to use the Win32 API 
set.  This self-reinforcing ecology guarantees that any transition to more specialized personal 
computers will be slower than it otherwise might be.

But Microsoft is not the only factor opposing specialization. Computing systems differ from 
biological systems in important ways.  First, the elements of biological systems are self 
configuring, self protecting, and self optimizing in ways that computing systems are not.  IBM’s 
efforts to create autonomic computing systems are, in large part, an attempt to redress this 
deficiency.  But those efforts will move slowly.  In the mean time, we must configure, provision, 
and maintain our systems by the mostly manual efforts of IT professionals (or gifted amateurs). 
The more specialization in computing, the more specialization will be required in already hard-
pressed IT staffs.  So, until computers are primarily self-configuring there will be a 
countervailing force against specialization that is not present in biology.

Economic forces and user needs also tend to counter specialization.  A few years ago there was a 
flurry of interest in what then was called “Thin Client.”  That meant, in effect, a replacement for 
the ever-present Wintel PC that would be specialized to support the needs, and only the needs, of 
the knowledge worker.  That is, a specialized PC.  Other somewhat related efforts have come and 
gone over the last decade.  These efforts come up short in part because of the economies of scale 
of a one-size-fits-all PC, and in part because it isn’t as easy as it seems to determine what 
functionality the employees really need, especially given the rapid innovation in computing that 
tends to emerge first in the Wintel ecology (e.g., P2P and VOIP).  A similar issue has surfaced 
more than once with respect to Microsoft Office.  Most external commentators (and many inside 
Microsoft as well) admit that Office has grown obscenely bloated.  Few users actually use more 
than a small percent of all that functionality.  The problem is that there is little if any consensus 
about which functions are essential.  Nor can IT directors easily agree on exactly what 
functionality a putative Thin Client should support. The recent emergence of an “office” Linux 
PC is shaking things up a bit because, by starting from scratch, the question becomes what 
functions do we need to add, not what can we subtract.

So, we will see accelerating specialization in most, if not all, areas of computing, especially in 
small low-power personal computing devices and special-purpose sensor/effector devices.  
Worldwide shipments of new cellphones, PDAs and iPods already far outstrip those of Wintel 
boxes.  Specialization moves forward whether or not the Wintel world cooperates.
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Multicellular communication
Both living and computing systems are information processing systems.  Necessarily, then, they 
must export and import information.  Living organisms import information about their 
environment to find food or avoid danger.  And their unavoidable need to export biochemical 
byproducts of their metabolism provides information to surrounding organisms. Computers 
likewise must import and export information. Isolated computers used to communicate in various 
ad hoc ways determined by their programmers without much regard for the needs of other 
computers – hence the thousands of proprietary binary formats developed over the years.  
Because multicellular organisms and computers are specialized, hence their behavior requires 
more orchestration, the way they exchange information has become far more important. 
Cooperation between specialized elements requires complex and selective messages.

Both biological messages and digital messages are transmitted by linear sequences of 
interchangeable elements – "alphabets" if you will.  Cells use messenger molecules constructed of 
chains of simple chemical subunits. Computers use messages that are sequences of bytes.

Life has evolved two sorts of chain molecules: proteins, which are chains of amino acids, and 
DNA/RNA, which are chains of nucleotides33 that carry the genetic 'program' of the cell.  
DNA/RNA differ from messenger proteins in their relationship to the cellular CPU (its nucleus in 
which complex control mechanisms determine which chunks of genetic material will be 
expressed).  DNA and RNA are “executable” by the cellular machinery whereas proteins are not. 
Transfer of messenger proteins causes the cell to select behavior from its existing repertoire 
whereas transfer of genetic material changes the repertoire itself.

Digital messages in computing are strings of bytes that range from idiosyncratic binary codes to 
highly structured XML messages such as SOAP or other Web Services messages.  Some strings 
are executable and some are not depending on the computer’s CPU (or interpreters for scripting 
languages such as Java or ActiveX).  Thus, both life and computing have evolved two forms of 
complex information media: one executable and the other not.  

The distinction between the two kinds of message is central to communication strategies both in 
biology and in computing.  The parallels are instructive for understanding multicellular 
computing.  Whereas single-cells and computers benefit by exchanging executable code, code 
exchange in multicellular systems is dangerous. Polymorphic non-executable messages are far 
better suited to multicellular systems. In fact, DNA exchange is shunned by multicellular life. We 
are learning about the dangers of exchanging code the "hard way" as we cope with increasingly 
dangerous digital viruses and worms in multicellular computing.

Communication in biology
There is no more stark divide between single-cell and multicellular organisms than the way they 
pass information from one to another.  Single-cell and multicellular organisms use almost 
completely opposite strategies for communication.  Most information communicated directly 
from one single-cell organism to another is passed by transferring DNA (a process known as 
conjugation).  In contrast, multicellular organisms exchange DNA only in the process of sexual 
reproduction. This rule against multicellular genetic transfer is so universally obeyed that 

33 Protein chains tend to be from a few dozen to a few thousand amino acids in length. Functional RNA 
chains can be as short as 10-20 units or as long as a million units.  Bacterial DNA molecules are a few 
million bases long.  Human chromosomes, each of which is one contiguous chain of paired nucleotides, 
range in length from 50 million to about 250 million base-pairs.
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Loewenstein34 calls it “…the taboo of intercellular transfer of genetic information.” Virtually all 
cell-to-cell communication in multicellular organisms is transmitted by protein messenger 
molecules.

That is the state of affairs today.  There likely was a lengthy transition period in the evolution 
from single-cell to multicellular life in which cells continued to use DNA and RNA for 
communication in addition to a growing dependency upon protein messenger molecules.  Over 
time, though, organisms that did not obey the taboo against exchange of DNA lost out in the 
contest of survival of the fittest.

Communication by DNA transfer

Bacterial DNA transfer is a normal and powerful means for single-cell organisms to communicate 
information about new ways to compete and survive in their shared chemical environment.  It 
allows successful mutations to quickly spread to a large population of bacteria.  For example, 
DNA transfer is responsible for the rapid spread of antibiotic resistance among bacteria.  DNA 
transfer does not just occur between cells of the same species.  Perhaps 25% of the E. coli 
genome has been acquired from other species.  Such cross-species gene transfer speeds the spread 
of new traits by a factor of 10,000.35

We do not have to look far to understand why multicellular organisms shun DNA transfer. 
Importation of DNA essentially “reprograms” the cell.36  If such a transfer turns out to be 
beneficial to a single-cell organism, so much the better; it survives to pass the new DNA on to its 
progeny.  If not, it dies, is quickly replaced, and is mourned by no one.  Multicellular organisms 
are made up of differentiated cells that all contain the same complement of DNA.  Specialized 
Metazoan cells may have completely different function from nearby cells.  These differences are 
required for the survival of the organism.  Transferring active DNA between cells would 
undermine differentiation in unpredictable ways.  For example, a motor neuron touches many 
muscle cells in order to direct their contraction.  Imagine the chaos if a muscle cell could inject its 
active DNA, which makes contractile proteins, into the nerve cell.  Then the nerve, rather than 
telling the muscle to contract, would itself contract detaching it from the muscle.  Moreover, even 
if such DNA transfers provided potential evolutionary advantage, they would be of no long-term 
value unless they could somehow make their way into the germ line and be passed on to progeny.

Communication by protein messenger molecules

Metazoan cells, instead of exporting DNA, export messenger molecules, primarily proteins, 
which bind to receptor proteins on the surface of other cells.  These messenger molecules cannot 
reprogram the receiving cell.  In fact, they cannot even guarantee a given behavioral response.  A 
particular messenger molecule, in general, elicits different behavior in different receiving cells. 
Insulin, for example, triggers very different responses in skeletal muscle cells, two kinds of fat 
cells, and cells in the liver.  In computing terms, therefore, these messages are polymorphic, i.e., 
their meaning is determined by the receiver.  Because single-cell organisms function for the 
benefit of only one kind of cell (themselves), they do not need polymorphism whereas 
multicellular organisms cannot do without it.

Cooperative communities of single-cell organisms, e.g., biofilms, also exploit molecular 
messengers, if only in a simplified manner.  For example, “quorum sensing”37 bacteria sense the 
concentration of a kind of messenger molecule that they, themselves, export.  When enough 

34 See “The Touchstone of Life, Werner Loewenstein, Oxford University Press, New York, 1999 [p. 277]
35 Science, vol. 305 no. 5682, pp. 334-335, July, 2004
36 In the extreme case of a viral infection, it completely hijacks the cell and often kills it.
37 See www.nottingham.ac.uk/quorum/what.htm
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similar bacteria are present, the concentration rises and all of them sense a “quorum.”  They then 
change their gene expression behavior, for example to turn on the production of virulence factors. 
When acting cooperatively in real-time, their most important communication is via messenger 
molecules whereas, when acting as separate cells, they exploit DNA transfer via conjugation.  
When a virulent biofilm, e.g., of Staphylococcus or Salmonella is treated by antibiotics, any 
bacteria that happen to survive because they are more resistant to the drug are left as free single-
cells that can then pass on their resistance by conjugation.

Interestingly enough, social insects echo the communication strategies of cells much the way they 
echo the consequences of specialization.  Ants and termites, for example, use polymorphic 
molecular messages to organize their specialized behavior.  Differently specialized ants, e.g., 
workers and defenders, respond differently to chemical markers (pheromones).  Pheromones, are 
simply intercellular molecular messengers that happen to be exported into the environment.  They 
play important roles in the behavior of many species, including mammals and probably humans38.

Communications in multicellular computing
Computers send messages via strings of bytes rather than strings of chemical subunits.  The bytes 
may represent either executable code or data.  These days, executable code may be in a variety of 
formats.  Of course, .exe files are directly interpreted by the Wintel hardware/OS.  On other 
platforms there are comparable executable formats.  Various scripting languages become 
executable too if the right interpreter is available.  Data can be in many forms including binary 
formats agreed upon by the two communicating computers.  Graphics, video and audio formats 
abound. And newly emerging Web-Services  exchange messages in the form of structured XML 
dialects.

The need for a Taboo against transmitting code

Multicellular computing is beginning to evolve a taboo against code transfer.  Computers have 
“owners” that set the agenda of the machine and generally frown on having their computer 
hijacked by whoever happened to sneak in rogue code.  Many organizations, most especially 
sensitive government or financial organizations, already do their best to enforce such a taboo. 
Enforcement is complicated by the fact that it is not always possible to separate code from data, 
especially when end users can still be so easily tricked into executing an email attachment.  Code 
sneaks in as supposedly innocuous files like .jpg images and gets executed as a result of a buffer-
overrun exploit.39  For the foreseeable future, the computing industry will continue to improve its 
enforcement efforts and attackers will continue to sneak code past the defenses by ever more 
clever tricks. The only strategy likely to settle this arms race is a basic change in system 
architecture that presupposes a taboo.

Specialization tends to work against code transfer.  As in the case with multicellular organisms, 
each machine in a community of specialized machines may function in a very different context. 
Code for a router is meaningless in a PDA or a parallel computation engine.  The Windows 
monoculture, with its common APIs, permits meaningful, if dangerous, code transfers.  But 
without such a monoculture to provide a common context across machines, it simply makes little 
sense to base multicellular computing on transmitting code.

38 See http://www.cf.ac.uk/biosi/staff/jacob/teaching/sensory/pherom.html for a review of the evidence of 
human pheromones.
39 Note that new hardware capabilities from Intel and AMD allow memory to be marked “no execute” 
which will eventually make buffer-overruns less of a problem.  See for example: 
msdn.microsoft.com/security/productinfo/XPSP2/memoryprotection/execprotection.aspx
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What, then, can we say about computing paradigms that fundamentally depend upon the 
transmission of code?  For example, robots, whether on the surface of Mars, in orbit around 
Jupiter, or in a battlefield situation often require code updates on the fly.  But such robots are 
simply not going to be connected to the open Internet (except perhaps as toy examples for the 
enjoyment of netizens).  Communication with battlefield robots is no doubt encrypted and 
secured in multiple ways. Still, history shows that such efforts are never perfect.  More generally, 
computer scientists have spent a decade or more exploring mobile agents that move code from 
one machine to another.  Mobile agent systems can probably be sufficiently guarded if they are 
used with specialized hardware and operating systems rather than general-purpose Windows 
clients. Finally, a small industry is growing around the notion of cycle-scavenging, light-weight 
peer-to-peer (P2P) grids for distributed computing that require the transmission of code.  These 
P2P scavenging systems may be protected sufficiently given that they tend to be aimed only at 
strictly computational problems to be run in the background.  As long as they are carefully 
designed to suspend themselves as soon as the user needs the CPU, they may not represent a risk. 
Nonetheless, the whole point of such systems is to scavenge cycles from millions of Windows 
machines. That is, they depend upon a large monoculture which is an inherently dangerous 
climate.  Moreover, CPU cycles are getting increasingly cheap and light-weight grids are useful 
only for a narrow range of “embarrassingly parallel” problems.  So one wonders why taking the 
risk is worthwhile.

Communication by polymorphic non-executable messages

As code transfer loses popularity, a different and rapidly growing trend, Service Oriented 
Architectures (SOA) and Web Services, is gaining popularity.  It mimics living system’s use of 
polymorphic message sending.  The meaning of all SOA and Web Services messages is 
determined by the receiving computer, not the sender.  So the multicellular computing world 
seems already to be evolving the same basic architecture that evolved in biology. Today, it looks 
like future orchestrated collaborations between computers on the Internet will be based upon one 
variety or another of SOA.  Heavyweight SOA, based upon SOAP, WSDL, and a host of other 
standards, is gaining favor in corporate IT systems. Lighter weight SOA mashups, e.g., those 
based on AJAX are growing rapidly in the Internet at large.  In either case, useful Web Services 
are emerging on the net and multicellular combinations of Web Services are becoming much 
more common.  Still, legacies live on.  We must coexist for many years with legacy systems that 
use proprietary communication protocols, old EDI protocols, HTML protocols, and many less 
common formats.  If biology is any guide, many of these will never fully disappear.  They will 
become frozen historical accidents to puzzle future students of the history of computer science.

The evolution of semantics
The form of future collaborations between computers seems on its way to being settled, i.e., by 
moving towards SOA.  But the substance is not. Polymorphic messages encoded in XML are 
syntactically but not semantically self-describing.40  If polymorphic messages are to be the basis 
of communication, there has to be some agreement on the meaning of the messages.  SOA 
messaging semantics will be sorted out by various standards bodies, conventions, and much 
evolutionary trial and error.  None of these are completely satisfactory – standards are slow, 
conventions conflict, and evolution is messy.  But, if biology is any guide, evolution will 
dominate.

40 XML does not encode semantics.  Only the syntax is self describing.  When people read XML, they 
perceive the human-readable tags as carrying semantics.  But those words mean nothing to the receiving 
computers.  Semantics remains in the minds of the reader and writer of the text, not in the XML itself.
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Evolution of messaging semantics in multicellular organisms operates upon all aspects of the 
message process at once.  An individual organism begins with a fertilized egg that divides.  Its 
daughter cells all share the same DNA.  These daughter cells differentiate, staying physically co-
located.  Hence, the organism’s DNA codes for all aspects of the messaging behavior: the 
behavior of the “sending” cell, i.e., how and when it synthesizes and exports a given messenger 
molecule, the shape and lifetime of the messenger molecules,41 and the behavior of the 
“receiving” cell(s), i.e., which ones have binding sites for a given molecule and what pathways 
are triggered by receipt of the message.  If the semantics of the resulting message transfer are not 
beneficial or at least neutral to the health of the organism, the whole organism is at higher risk of 
death before it can pass the DNA on to the next generation.  Thus survival of the fittest, which 
operates at the whole organism level, simultaneously punishes poor “syntax” and muddled 
“semantics” by culling mistakes at either end of the communication.

A single corporate network infrastructure may play an evolutionary role similar to that of a single 
multicellular organism.  That is, it is a unitary, logically contiguous, dedicated collection of 
computers that supports the whole organization, for good or ill.  Its routers, firewalls, VPN links, 
LDAP servers, DMZs, and specialized application servers must share an agreed upon and 
internally compatible architecture and implementation.  And the semantics of pairwise 
collaborations must be sensible.  The corporate IT staff work to ensure this.  If the system is not 
up to the job, disaster may well ensue for the whole organization.  A corporation with a seriously 
flawed infrastructure may well go out of business, thus failing to pass on its ineffective 
infrastructure architecture and semantics.  Bank mergers are a classic case.  A bank’s 
competitiveness often depends in large part upon its IT infrastructure, which is a carefully (or not 
so carefully) crafted multicellular computing organism.  The weaker bank, when acquired by a 
stronger one, typically remakes its IT infrastructure to be compatible with the winning bank’s 
architecture.  This sort of system evolves its messaging architecture in a manner similar to that of 
a multicellular organism, by a remorseless process of survival of the fittest.

The evolution of message semantics in the open Internet is more complicated.  A person’s 
computer may play a different role in many different sets of multi-computer collaborations, some 
for private uses and some in their role as an employee, customer, or supplier in business 
relationships.  This is similar to the more fluid and ambiguous semantics in ecologies of 
organisms where a single organism plays many different roles in different ecological 
collaborations.  Predators recognize prey, and vice versa, by all sorts of chemical signals.  So, 
chemical signals mean one thing between individuals of the same species and another to their 
predators or prey.  For example, the musky smells of animals travel on the wind.  Thus predators 
attack from downwind so as not to warn the prey.  The “come hither” scent of a desert mouse is 
intended to attract a mate.  That it also attracts a hungry snake is not just an unfortunate accident.  
Snakes coevolve with the mice.  In a similar manner, especially valuable services (e.g., Google, 
eBay, Amazon or SalesForce.com) support an API with defined semantics that attracts third party 
services.  Or, services with plentiful and demographically valuable users attract competing 
services that will offer the same API with the same semantics to attract those users.  Successful 
poachers of either sort can then add to the API and the semantics in an attempt to freeze out 
competitors (this is the familiar Microsoft “Embrace, Extend, and Extinguish”42 strategy).  Such 
coevolution can result in richer and more useful semantics.

41 Intracellular mechanisms degrade almost all proteins, some quite rapidly.  The rate at which degradation 
occurs depends in large part upon the precise sequence of the amino acids.  The resulting half-life 
determines their range and the duration of their effect – that is, messenger half-life is an explicit aspect of 
control that evolves along with the sending and receiving cells.
42 http://en.wikipedia.org/wiki/Embrace,_extend_and_extinguish
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Some efforts, such as UDDI43 have attempted to provide a semantic “yellow pages” service as a 
rendezvous point for finding services with the “right” semantics and to organize such semantic 
information into useful taxonomies.  So far, these efforts have been premature, over-engineered 
and overly complex.  It has been like attempting to start a telephone Yellow Pages before there 
are enough phones to matter.  So, the semantics problem in the Internet remains difficult.

Alan Kay 44§ proposes that the semantics travel with the message by using objects as the message 
carrier rather than just data.  An object carries both data and the code that provides some of its 
meaning.  Security issues would be handled by assuming that the machines are specialized as 
object engines that provide separate address spaces for all objects so that one cannot interfere 
with another.  However, object collaboration still requires some shared understanding of the 
semantics of the polymorphic messages.  Reflexive systems, those in which metadata is available 
with which objects can “reason” about message interfaces of other objects, might be agreed upon 
and such reasoning might support the bootstrapping of enough semantics to dramatically speed 
the evolution of useful ways of collaboration.  Or, SOA brokers could match up “compatible” 
parties.  This object approach might offer real advantages, however it is a radical departure from 
the way our current machines work and would require substantial evangelism and investment to 
succeed.  Nonetheless, one day perhaps some classes of computer applications might work very 
well in general object engines.

The power and accessibility of interpreters
Computers march to the beat of more than one type of code.  The CPU defines the machine 
language. But today most computers also run interpreters that execute different sorts of script or 
byte-codes.  In addition to Java and C# byte codes, end-user machines may well also support 
Javascript, Perl, PHP, Python, Ruby and many others.  Even Postscript and some image formats 
are interpreted.  All of these transform data to executable code if the right interpreter is available.  
And all can be dangerous.  For example, Javascript recently has been shown to open cross-site 
scripting vulnerabilities.45  Javascript is vital to SOA or Web 2.0 implementations using the 
increasingly popular AJAX techniques.46

Interpreters are dangerous in large part because they may allow unfettered access to the OS’s API 
set, ActiveX controls, disk storage, the TCP/IP stack, the keyboard, the screen or even the PC's 
microphone. All of these can provide exposure to misuse by malware.  Access to the TCP/IP 
stack enables the machine to replicate worms and be hijacked to implement zombie DDoS and 
other denial of service attacks. Access to the keyboard enables spyware to sniff passwords and 
credit card numbers. Ability to write to the screen can enable phishing or spoofing. Access to the 
microphone can enable a browser application to capture sounds in the room.  For example, 
Google has been experimenting with determining what TV shows the user is watching from 
snippets of sound captured by the PC’s microphone.47

43 See www.uddi.org/.  This approach is part of a more general strategy for harnessing human abilities (as 
the final arbiter of true semantics) to electronic brokering of that information.  See “The Tao of e-Business 
Services,” S. L. Burbeck, 2000, www.ibm.com/developerworks/webservices/library/ws-tao/
44 This paragraph is based on a personal communication with Alan Kay.  Multicellular computing was the 
context for that discussion.  He has often voiced the view that “dumb” data should be avoided.
45 See  http://news.com.com/JavaScript+opens+doors+to+browser-based+attacks/2100-7349_3-
6099891.html?part=rss&tag=6099891&subj=news
46 See http://en.wikipedia.org/wiki/AJAX
47 See http://www.technologyreview.com/read_article.aspx?id=17354&ch=infotech
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In the single-cell computing world, the machine's hardware and software facilities were assumed 
to be under the control of the local user of the machine.  In a multicellular world, they can too 
easily become extensions of a remote multicellular system without our knowledge or consent. We 
must therefore improve our ability to control (or neuter) interpreters so that their behavior cannot 
compromise the computer. One approach might be to provide better low-level access protection 
or permission facilities. The familiar Unix “permission” structure, in which applications and users 
have predefined permission to read, write or execute files, was designed to protect a single-cell 
world where the disk was the central, key resource. From a multicellular computing perspective, 
communication traffic between computers and between the computer and its user, not 
management of its file system, will usually be the most important task the computer does. Hence 
communication between machines (e.g., TCP/IP) and with the user (keyboard, mouse, screen, 
microphone and speakers) should be controlled with a revamped permission structure appropriate 
to modern attacks on networked computers.

The issue of loading code
The historical notion that what one does with a computer is load it with code early and often is 
outdated in this brave new world swarming with viruses and worms.  That attitude assumed that 
the person loading new code was an expert that knew what the code did and where it came from. 
Those assumptions still apply today in IT organizations that maintain corporate servers and 
perhaps in the case of skilled amateurs maintaining their own PCs. They emphatically do not 
apply to the average computer user let alone the average cell phone or PDA user.

What is needed is a new perspective based upon the principle that loading code, while essential 
for the operation of a single computer, is fundamentally threatening to the multicellular 
computing system of which it is a part.  Until very recently, virtually all our practices for 
installing and maintaining software were legacies of the single-cell computing world.  The 
programming priesthood would determine what code should be installed on important machines 
and the rest of the users were largely on their own.  Then corporate networks found themselves 
compromised by end-user machines and we began to recognize the risks of loading code onto any 
machine within the firewall.  Lots of stopgap measures have been tried including individual 
firewalls for each machine, encrypted wireless nets, anti-virus software, rules and more rules.  
Yet little has been done in the way of fundamental rethinking and each month brings discoveries 
of new security holes not covered by existing band-aids.48

Biological systems do not provide much insight into this issue since all cells in all multicellular 
organisms begin with a full complement of DNA.  Loading code is a problem unique to 
computing systems.  Other than the few embedded computers for which all code comes in ROM, 
code must be installed before a computer can do anything.  With current practices and economics, 
we must also maintain and enhance the code, e.g., distribute and install patches, new versions, or 
new applications.  In the long run, many computers may be so cheap and ubiquitous that 
maintenance, patching, and enhancing their code is neither practical nor worthwhile – the user 
simply throws away the computer (e.g., a cell phone) and buys a new one.  However, at present 
and for the foreseeable future, we must continue to deal with code distribution, patching and 
versioning.

48 Microsoft made claims that Vista would make major contributions to this issue.  So far, however, Vista 
has not fulfilled such claims. As of April, 2007, several serious security holes already have been found. 
Instead of fundamental rethinking, it appears that Microsoft has merely redoubled their efforts to round up 
the usual suspects and offloaded responsibility for permitting code installation onto woefully unprepared 
end-users.
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Stigmergy and “self” in multicellular systems
As multicellular computing becomes more and more complex, we face an increasingly difficult 
problem of protecting large diverse systems, such as corporate IT systems, from intruders, 
viruses, worms, denial-of-service attacks, etc.  One idea that comes up periodically is to somehow 
mimic an immune system.  Yet that's not quite as straightforward as people often assume.  The 
underlying assumption in the immune system metaphor is that a biological "self" is a collection of 
cells with the right genetic IDs.  Therefore, determining self is just a matter of "checking the IDs" 
of all the cells, perhaps via certificates or other nominally incorruptible tokens.  However, that is 
a misreading of what "self" versus "other" means in the biological world.  While it is indeed 
crucial for a Metazoan to distinguish its own cells from predatory bacteria or virus infected cells, 
that is only part of the story.  It turns out that most multicellular organisms include cells other 
than those directly related to the metazoan's cells, e.g., many species of symbiotic bacteria and 
fungi.

For a single-cell organism, the boundary of “self” is straightforward. It includes the outer cell 
wall and all the structures, e.g., organelles, that exist within the cell wall.  Inside is “self” and 
outside is “other.”  For multicellular organisms, the answer is more complicated but it comes 
down to one simple fact: the organisms share a physically co-located structure – their “body.”

A multicellular “self” begins with a fertilized egg.  As this single cell divides repeatedly 
according to its developmental program, the organism grows.  In the process, the living cells 
create or assemble nonliving structures that provide form, cohesion, containment, stiffness, 
moving parts and protection.  Examples include bone, sinew, connective tissue, fur, shell, skin, 
scales, chitin, bark, wood, and all manner of other non-living extracellular material.  That is, 
Metazoan cells construct and continually maintain the very bones, sinews, etc. that help to 
protect, organize and provide the physical structure of the multicellular body.  This body, together 
with all the cells that live within it, defines the self.  Therefore, a multicellular self is a unit of  
benefit in the competition for survival of the fittest.  Although only the germ line is passed on 
when an individual survives long enough to reproduce, all the cells in a multicellular organism, 
together with their non-living constructs, compete as a unit and therefore live or die as a unit.  
The body of such a multicellular “self” is a stigmergy structure that is created by the organism's 
cells. That means that the cells build the body and the body, in turn, helps to coordinate the 
actions of the cells.  We will explore the notion of stigmergy in considerable detail below.  The 
important point here is that evolutionary processes select for the fitness of the whole organism, 
i.e., the whole stigmergy structure.49

Defending the “self”
Multicellular organisms are under constant attack from viruses and various single-cell organisms. 
Clearly, multicellular life evolved surrounded by these predators.  To this day the cells of all the 
Metazoan organisms on the planet are far outnumbered by single-cell organisms that are, in turn, 
far outnumbered by viruses.  Without powerful defenses, the multi-cell organisms would be 
overwhelmed very quickly.  So multicellular organisms evolved defenses based upon 
distinguishing self from “other.”50

49 Note that this is a mechanistic definition of self that does not, and is not intended to, deal with 
philosophical, psychological or theological notions of a human conscious self.  We are talking about the 
body, not the mind or the soul.
50 The issue of maintenance of “self” is called morphostasis.  One useful discussion of morphostasis can be 
found in  www.morphostasis.org.uk/Papers/Evolving.htm
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The common belief is that “self” is determined by the immune system.  That is only partly true. 
While the immune system “identity” of individual cells is helpful for defense, multicellular 
organisms did not evolve to support a more perfect defense.  They evolved to support a more 
perfect offense, i.e., to exploit the evolutionary advantages of added complexity and 
specialization.  

Genetic identity of all cells in the body is not necessary nor even desirable within a multicellular 
organism because most multicellular organisms benefit from symbiotic relationships with a wide 
variety of single cell organisms that live within them.  Complex organisms are typically ecologies 
in which many various species of single-cell organisms play vital cooperative roles.  In humans, 
at least a thousand species of bacteria and yeasts cohabit with us and play beneficial roles.

“It has been estimated that there are more bacterial cells associated with the average human 
body than there are human ones and one of the most important functions of our normal flora 
is to protect us from highly pathogenic organisms.  … A few of our normal flora produce 
essential nutrients (e.g., vitamin K is produced by gut flora) and our normal flora may prevent 
pathogenic microorganisms from getting a foothold on our body surfaces. ... Like it or not, 
we have large amounts of many types of bacteria growing almost everywhere in and on our 
bodies. About 10 percent of human body weight and 50 percent of the content of the human 
colon is made up of bacteria, primarily the species known as Escherichia coli, or E. coli.”51

These single-cell protectors are often the first line of defense against infection.  Our formal 
immune system only comes into action when the first line fails.  An immune system that insisted 
upon destroying these symbiotic organisms would destroy itself.

Nor is the genetic identity of cells in Metazoans sufficient to determine self.  Starfish generate 
new selves from pieces of themselves when dismembered.  Many plants generate new selves 
from cuttings.  And human identical twins have identical genetic makeup.  In all these cases, 
multiple distinct selves share the same DNA.  That is, each of these genetically identical selves 
benefits separately from surviving long enough to pass on its genes to the next generation.

Stigmergy: the organizing principle in multicellularity
Much of the communication between cooperating entities (cells, social insects or computers) is 
indirect. The entities deposit cues, i.e., persistent messages, in external structures – connective 
tissue, termite mounds, or databases as the case may be – that help to organize the behavior of 
other entities that later encounter these cues. The information embedded in external structures is 
created or organized by the collective action of the cells/computers/insects whose behavior is 
then, in turn, organized according to the persistent embedded information. The term stigmergy 
was coined in the 1950’s by Pierre-Paul Grasse52 to refer to the reciprocal relationship between 
social insects and the structures they build, e.g., termite mounds, ant hills, beehives and even the 
pheromone-marked ant trails of nomadic ant species such as army ants.

Although the term was coined to describe social insect behavior, the “active” elements and the 
“passive” structures they build arose during the evolution of multicellularity. The very bodies of 
all multicellular organisms are stigmergy structures.  In the earliest and simplest multicellular 
organisms the extracellular matrix may be nothing more than a “slime” excreted by the cells that 
forms a clump or thin film in which the cells live and through which messenger molecules diffuse 
from one cell to its neighbors.  More complex multicellular organisms have much more complex 
extracellular matrix structures that support more subtle complex communication.   The cells 
51 From bioweb.wku.edu/courses/BIOL115/Wyatt/Micro/Micro2.htm
52 See “Self-organization in social insects.”  Bonabeau, E., Theraulaz, G., Deneubourg, J.L.,  Aron, S. & 
Camazine, S., Trends in Ecology and Evolution, vol 12, pp. 188-193, 1997.
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deposit all sorts of molecular cues in the extracellular matrix that influence the behavior of other 
cells.  Plants create rigid stigmergy structures made largely of cellulose and other complex 
sugars.  Complex animals create connective tissue that gives structure to their various organs and 
generally holds their bodies together and protects it: molluscs create shells, insects create 
chitinous exoskeletons, and vertebrates create bone.

Social insects, cooperating cells, and cooperating computers communicate both with signals and 
cues.  The distinction is that signals are active short-lived communication events whereas cues are 
information embedded in the stigmergy structure to be read and reread many times. Both are 
specialized messages in the sense that they mean different things to different specialized 
receiving cells (or insects or computers).  However cues are further specialized by their location. 
In addition to the information intrinsic to their molecular form or digital content, there is also 
information inherent in their location in the stigmergy structure.  Cues support more complex 
kinds of communication than do signals, hence cues play the larger role in complex ant societies 
whereas signals play the larger role in simple ant societies.53

As is the case with social insects, cells in multicellular organisms communicate both by signals 
(polymorphic messenger molecules moving indiscriminately through blood, lymph or other 
liquids) and by cues (polymorphic messenger molecules attached to the extracellular matrix).  For 
example, bone, when stressed, provides cues to osteocytes and other bone cells for its own 
reshaping to better handle the forces placed upon it.  And smooth muscle cells in the walls of 
blood vessels modulate their contractility according to cues from the extracellular matrix. 54  Not 
surprisingly, as with social insects, simple multicellular organisms communicate primarily by 
signals whereas complex multicellular organisms communicate more by cues. Here again, 
multicellular computing recapitulates biology.

Stigmergy in computing systems
Digital stigmergy structures are models populated with digital data by a distributed community of 
"clients" that also interrogate the current state of the data.  That shared data plays an emergent 
organizing role in otherwise independent entities.  Examples in single-cell computing include:

• The Windows Registry -- its model is a hierarchical key-value dictionary.  That is, values 
can contain more keys.  It is populated by and queried by various applications and by the 
operating system itself. Unix has similar structures that support cooperative behavior by 
cues left in structures accessible to the participants.

• Cut and paste buffers -- the model is a single (or sometimes a time-ordered set) of 
structured and typed data recognizable to one or more applications.  The applications 
deposit this data when the user "cuts" or "copies" data from within an application.  Any 
other application that recognizes the data type may "paste" it into its document.

• Blackboards in AI systems -- blackboards were first developed in the mid '80s for 
emergent communication and control of various expert-system inferencing subsystems. A 
blackboard is shared read-write memory in which assertions and/or goals are posted by 
the various inferencing "agents" and read by others.  These days blackboards are finding 
application in first-person shooter game software.

53 “Individual versus social complexity, with particular reference to ant colonies,” Anderson, C & McShea, 
D. W.  Biol. Rev., vol 76, pp. 211-237, 2001.  p. 228
54 Extracellular matrix controls myosin light chain phosphorylation and cell contractility through 
modulation of cell shape and cytoskeletal prestress.” Polte, TR, Eichler, GS, Wang, N, & Ingber, DE.  Am 
J Physiol Cell Physiol 286: C518-C528, 2004.
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Familiar examples of stigmergy in corporate intranets include databases, file servers, DNS 
servers, email servers, and all manner of routers and other communications structures. Consider 
for example a customer database for a corporation. Its model is typically a relational data model 
of customers, their orders, and their accounts.  It is populated and read by sales personnel, the 
shipping dept., accounts receivable personnel, and perhaps to some extent by the customers 
themselves if there is a Web interface for orders.

Most complex computing systems support persistent organization such as corporations, 
universities, governmental agencies or large web services such as Google, Amazon, eBay, Yahoo, 
and the like.  Corporations are not only a type of collective “self,” recognized in law, but also are 
a “self” based upon their stigmergic structures.  The people in the company create external 
structures that serve, in turn, to help organize their activity.   These typically include buildings 
(offices, factories, warehouses, etc.), equipment (ships, trucks, milling machines, desks, copiers, 
and computers), records (the “books,” the contracts and other documents), and persistent financial 
structures such as bank accounts and shares of stock and bonds issued by the corporation. 
Increasingly today the most important structure in a corporation is not the bricks and mortar, but 
the IT infrastructure – the physical and logical networks (VPNs), databases, and applications that 
manage and transform business-critical information.

As with the temptation to think that the biological self is defined by the immune system, 
“selfness” in computing systems is often misconstrued to be about the identity of the connected 
leaf devices and the identity of authorized users.  Yet the identity of a given machine can’t be the 
determining factor since machines can be lost, stolen or compromised by a virus or worm.  Nor 
can the identity of the person be the determining factor since people move from company to 
company, they forget their passwords, they leave their passwords around on sticky-notes, or they 
choose trivial easily guessed passwords.  

For these and other reasons, we are beginning to recognize that the perimeter of a corporate 
network, i.e., the collection of PCs and other personal devices used by employees, is inherently 
indefensible.  Moreover, the perimeter is also becoming undefined because it now intersects with 
supplier and customer systems and the corporate employees themselves work remotely, 
sometimes in a disconnected mode.  Yet just inside the indefensible perimeter lies the core of the 
corporate infrastructure, i.e., the definable and defensible network, databases, and corporate 
application servers.  That core stigmergy structure is the corporate IT “self.”  The fundamental 
job of the staff in an IT organization is to maintain this vital corporate computing infrastructure. 
They play a role similar to ants maintaining the nest, or bees maintaining the hive.

That does not mean that IT staff can abandon the perimeter – certainly not today.  While the IT 
infrastructure can, in theory, be defended, its defenses are not yet sufficiently strong to ignore the 
perimeter.  The network is susceptible to denial-of-service attacks if nothing else.  All too many 
databases and corporate applications are protected primarily by passwords, with all their known 
weaknesses.  All possible efforts must still be bent toward minimizing the danger represented by 
the perimeter devices, especially Windows machines that are the target of almost every attack. 
One day, however, the IT infrastructure will protect itself even when the perimeter devices are 
compromised.  To that end, IBM and Cisco are collaborating on a new approach based on a smart 
network defense, i.e., a self-defending network.  Defense is enforced at first level routers, hubs, 
and access points – that is, at the edge of the IT stigmergy structure.  

Novel stigmergy structures in the Internet
Stigmergy in computing is about creating a persistent self.  However “self” in computing isn’t 
about the persistence of a physical body, it’s about the persistence of a reliable means of 
communication between the individual machines and a reliable way to store the persistent data 
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required for the organization to survive and grow.  That is, stigmergy in computing is about 
persistent structures in a world of bits not atoms.  Since the world of bits changed dramatically 
with the birth of the Internet and then the World Wide Web, notions of stigmergy in computing 
are changing too.

Linux, for example, can be thought of as a software termite mound.  The stigmergic structure is 
provided by the “blessed” Concurrent Versions System (CVS) code repository servers that are 
under the control of the Linux “inner circle” (Linus Torvalds, Alan Cox, etc.).  Clearly, the Linux 
CVS code tree is built by and helps to organize the efforts of a worldwide community of Linux 
programmers.  While Linux is perhaps the best known example of an open-source stigmergy 
structure, Apache web server software, MySQL database software, Mozilla browser software (in 
its new and very popular Firefox incarnation), and OpenOffice (a Microsoft Office replacement) 
are having a similar impact. Before the success of Linux and Apache, it was pretty much taken 
for granted that large-scale, robust software had to be built by a corporation dedicated to its 
success that provides a co-located stigmergy structure of servers, programmers, buildings, 
marketing arms, PR flacks, and large financial resources.  However, Linux, Apache, MySQL, 
Mozilla and OpenOffice all directly compete with key portions of the Windows monopoly that is 
supported by Microsoft’s well funded organization.  They are doing well enough to strongly 
suggest that an open, distributed development structure has strengths that were previously 
underestimated.

The open Internet supports many other public stigmergy structures that are collectively managed 
and used by humanity as a whole55.  The most obvious examples are, of course, web sites which 
are persistent and which organize human browsing behavior via links.  Other examples include:
• Web search (e.g., Google) where the stigmergy structure is their huge infrastructure of 

crawler data plus the crawlers and servers that create and use it.  The search engines react as 
humans change the Web and human browsing is, in turn, organized by the results.  Many 
people these days go to Google rather than manage bookmarks trusting that the site they want 
will come up near the top of the search results and enjoying the serendipity of exploring other 
top links.

• MMORPGs -- Massively Multiplayer Online Role Playing Games such as World of 
Warcraft, EverQuest, Second Life, and many others are based on servers that maintain 
"models" of their virtual worlds (in the Model-View-Controller sense) acting as the stigmergy 
structures around which tens of thousands of online gamers organize their play. The game 
model is altered in "real-time" by the behavior of the players and the player's behavior is 
altered by the constantly changing model. WoW has some 6.5 million users and claim that 
they have supported over 250 thousand simultaneous users. EverQuest has at least 430,000 
players and has supported over 100,000 simultaneous players.  Second Life supports about 
250,000 users on 2,579 dual-core Opteron servers organized in a semi-decentralized 
architecture

• Instant messaging communities (AOL, MSN and Yahoo) where the stigmergy structure is the 
“presence registry” that tracks who is online at any given moment.  People who use instant 
messaging recognize how their behavior is modified by being aware of which of their friends 
and colleagues are accessible online.

• Free VOIP services (Skype) are similar to the instant messaging communities except that 
they communicate with higher bandwidth voice rather than just small text messages.  The 
ability to set up free phone conferences via Skype with up to five people anywhere in the 

55 “As a whole” is an exaggeration.  Only the digitally literate can participate.  Moreover, more or less 
successful attempts have been made to balkanize the Internet into censored and controlled subnets, e.g., in 
oppressive countries such as China, North Korea, Singapore, Saudi Arabia and Iran.
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world has the potential to change global business behavior, not to mention family 
communication.

• Free and open file sharing networks (e.g., Gnutella, eDonkey, Freenet, Grokster and 
BitTorrent), construct a virtual stigmergy structure comprised of a constantly shifting 
collection of client machines that support the appropriate set of P2P protocols.  Each 
participating machine makes available some files.  Music file sharing communities, together 
with the new end user iPod devices, are reshaping the way people relate to music and thus 
reshaping the entire music industry.  They threaten to do the same for the movie industry.

• Public databases.  For example, most medical and post-genomic bioinformatics research 
world-wide is completely dependent upon public databases such as GenBank, PDB, Pub 
Med, and BIND56.  Most academic and/or public affairs disciplines, where data is usually 
assumed to be a public good, have similar sorts of communities organized around major 
databases.  These databases, which are clearly stigmergy structures, often support easy-to-
use, yet sophisticated domain-specific search functions.  Social incentives, such as mandates 
by granting agencies are encouraging researchers to put their new data into these databases 
and most researchers focus much of their activity around use of that public data.

• Blogs and Wikis are other examples of public stigmergy “selves.”  Wikipedia, for example, is 
an open encyclopedia with about 400,000 entries that is created and maintained by users all 
over the world.

• Social networking sites such as MySpace and Facebook help form and organize human 
digital social groups.

• Folksonomy sites such as Flikr, del.icio.us, and YouTube collect and organize tags for 
unstructured data.  Folksonomy stigmergy structures consists of both the data (e.g., photos, 
bookmarks, or videos) and the database of tags that support search.  Thus, while the data and 
the tags are each stigmergy structures, their interdependence strengthens both.

Note that all of these novel communities are organized around new stigmergy structures, i.e., new 
selves, of a sort that didn’t exist previously.  Their worldwide scope, speed, and enablement of 
new kinds of interaction emerge out of the scope, speed, and protean flexibility of the Internet.

The rapidity with which open Internet-based systems mutate provides an interesting challenge for 
corporate IT infrastructures that inevitably mutate slowly.  One of the goals of “On Demand 
Computing” is to make corporate infrastructures more flexible so that they can evolve to exploit 
changing conditions more quickly.  Yet, ad hoc P2P networks are already “On Demand” in the 
sense that their infrastructure grows at the same rate as their “customer” base since each user 
contributes some resources to the network in exchange for participating in the network.  Thus 
Skype, a free VOIP network is growing very rapidly with almost no expenditure of its own 
resources while the old-fashioned telephone companies struggle to adapt.  Similarly, public 
databases, once accepted in their relevant communities, can grow much more rapidly than can a 
competing proprietary database.  Many a bioinformatics startup company has found it impossible 
to provide proprietary for-fee databases in competition with free public databases.

The open question is: what other models of “smarter” interactions might emerge.  Friend-of-a-
friend networks have been tried by startups such as Friendster, Tribe, Tickle, Ryze, LinkedIn and 
others.  Apparently they haven’t worked or haven’t been done quite right.  Yet similar sites such 
as MySpace and FaceBook are growing rapidly.  Clearly, something along those lines will 
succeed when it combines the right stigmergy structures that generate some sort of persistent 
larger “self” with ongoing value.  Anticipating and/or understanding how to create new types of 
stigmergy structures in the open Internet will be a powerful force for innovation.
56 GenBank manages DNA sequence data, PDB manages protein structure data, Pub Med manages 
biological and medical publications, and BIND manages protein-protein interaction data.  There are 
hundreds of other useful bioinformatics databases freely available on the Web.
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Maintaining the multicellular “self” by cell suicide
Perhaps the least obvious of the four principles of multicellularity is apoptosis (sometimes spelled 
aptosis or apotosis and also known as Programmed Cell Death).  The basic principle is that, for 
the good of the organism, all of its cells must be prepared to suicide. They do it in a very 
carefully programmed way so as to minimize damage to the larger organism.  And they don't do it 
just when things go wrong!  The apoptosis mechanism is a normal and a creative aspect of 
multicellular life.  Every year the average human loses half of his/her body weight in cells via 
apoptosis.  And orchestrated apoptosis helps the growing embryo to sculpt many aspects of its 
final form.  Because apoptosis is so crucial to multicellular organisms, it is very carefully 
intertwined with the other three multicellular principles.

Self-organization of a Metazoan organism, aided by stigmergy, is not the end of the story.  No 
sooner has a Metazoan begun to organize itself, than it is subject to the slings and arrows of fate. 
Constituent cells can become infected with viruses or bacterial predators, their DNA can be 
damaged by replication errors, radiation or mutagenic chemicals, or they can lose their 
differentiation and thereby become neoplastic and eventually cancerous.  Infected cells will in 
turn infect their neighbors.  DNA replication errors or mutations will be passed on to the cell’s 
progeny.  Cancer cells, of course, grow rapidly without bound and disrupt vital bodily functions.  

The solution multicellular life evolved is a set of mechanisms that trigger apoptosis, or cell 
suicide.  Metazoan cells have evolved mechanisms for detecting internal errors that might 
threaten the whole organism and react to such errors by killing themselves.  For many types of 
cells, loss of contact to the extracellular matrix (the body’s stigmergy structure) triggers 
apoptosis.  That is, if they somehow become detached from their proper place in the body, they 
suicide.  In general, each cell in advanced Metazoans has two specialized sorts of receptors on its 
surface that connect to the apoptosis mechanism.  One type receives messages that suppress 
apoptosis and the other type receives messages that encourage apoptosis.  Cell survival is 
determined by the balance between these two types of message. 

Needless to say, the semantics of the “live or die” messaging mechanisms have evolved with care 
– all the more so because apoptosis is used not only to kill dangerous cells, but also to sculpt 
many body structures during development from an egg to an adult.  For example, apoptosis 
causes the disappearance of a tadpole’s tail and apoptosis removes the webbing between 
embryonic human fingers so that the fingers can separate57.

Apoptosis is a highly ordered process that removes the cell with a minimum of risk or damage to 
nearby cells.  In an orderly manner, apoptosis shrinks the cell, degrades the DNA in their nucleus, 
breaks down their mitochondria, and then breaks the cell into small, neat, membrane-wrapped, 
fragments.  Finally, phagocytic cells like macrophages and dendritic cells engulf the cell 
fragments.  The phagocytic cells also secrete cytokines that inhibit the inflammation58 that 
otherwise would be a danger to the surrounding cells.  Apoptosis removes cells in such a careful 
and well controlled manner because removing cells is just as important to the health of the 
multicellular organism as growing new cells.  

57 See  www.knowledgerush.com/kr/jsp/db/viewWiki.jsp?title=Apoptosis for more discussion of apoptosis.
58 From  http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/A/Apoptosis.html
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Apoptosis evolved coincident with the first types of multicellular life: colonies of bacteria.59 

“...the invention of apoptosis was an essential feature of the evolution of multicellular animals.”60 

Today all multicellular organisms, both plant and animal, rely on some form of PCD.  It clearly 
evolved to deal with the sorts of issues that face multicellular organisms but not single cell 
organisms: initial development of the body, and after development, the maintenance of the 
organism against threats of DNA damage, viral infection, and loss of differentiation.  Most 
importantly, it solves those issues from a multicellular perspective: sacrificing the individual cell 
for the good of the multicellular organism.

Computing could benefit from the two central lessons of apoptosis: first, the system is architected 
so that no cell is indispensable, and second, it is not a top-down system.  The task of protecting 
the system is given to every part of the system, including the very cells that may represent the 
threat.

Apoptosis in computing
Of the four architectural principles discussed in this paper, apoptosis seems most foreign to the 
world of computing.  But the principle is used in some mission critical military or avionics 
systems (e.g., the space shuttle or fly-by-wire controls for jets).  Redundant computers, working 
in parallel, monitor each other.  If one computer goes astray, it is shut down.  In critical corporate 
applications and databases we have hot backup systems that detect an imminent breakdown and 
switch to a backup.  Those examples are characterized by a strong awareness that the larger 
system must survive.  In less mission-critical situations, our old “single-cell” attitudes tend to 
dominate.  We strive to make each individual computer as robust as possible and assume that the 
robustness of the system is somehow the sum of the robustness of its parts.  Of course, when put 
that way, most of us will recognize that a better metaphor is probably that of a chain, which is no 
more robust than its weakest link; the more links the more likely one will fail.  Still, the idea of 
cutting out the weakest link seems foreign to most computing professionals.  We would rather 
redouble our efforts to strengthen it.  That reflects a fundamental misconception about our ability 
to control complexity.  In multicellular computing systems, we seldom have control of every 
participating computer, let alone have the ability to strengthen every one of them.
Apoptosis mechanisms evolved along with multicellular life and multicellular life could not have 
evolved without apoptosis. Multicellular organisms assumed, and exploited, the fact that all cells 
are expendable.  Multicellular computing systems, in contrast, evolved without assuming cell 
suicide. Instead, our default assumption was, and still is, that each and every computer is valuable 
and must be protected. That was acceptable in early multicellular computing systems, e.g., client-
server systems, only because they did not have to face today's onslaught of viruses and worms.

As the value of each and every computer diminishes and the threat of viruses and worms 
increases, our attitudes must adjust to the new reality. If we are to make use of the example set by 
biological evolution, we should architect our computing systems so that we can sacrifice any 
individual machine in order to protect the larger organism.

59 For example, modern cyanobacteria, the descendants of the earliest bacterial colonies, have a PCD 
pathway.  “The demise of the marine cyanobacteria, Trichodesmium spp., via an autocatalyzed cell death 
pathway, Berman-Frank, I., Bidle, K.D., & Falkowski, P.G.  Limnology and Oceanography, 49(4), pp. 997-
1005, 2004
60 See: “Identification of caspases and apoptosis in the simple metazoan Hydra,” Cikala M, Wilm B, 
Hobmayer E, Bottger A, David CN,  Curr Biol., Sep 9;9(17):959-62, 1999.
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Digital analogs of cell suicide
As we contemplate the adoption of a computing equivalent of cell suicide we must first recognize 
that the digital world differs in several important ways from the biological world:
• Since multicellular computing is about virtual interaction rather than physical interaction, a 

computer that is isolated from communication with any other computer is effectively dead.  
Thus, in computing, we may only be talking about ostracizing an errant computer (cutting it 
off from the net) and keeping it ostracized until it is cleaned or rebuilt rather than shutting it 
down completely.

• In biological systems, all cells share the same apoptosis mechanism hence cell suicide is 
essentially the same process no matter what kind of cell it is.  Computers, however, play very 
different roles in the IT structure that will require different ways of dealing with the need to 
sacrifice a particular computer for the good of the system as a whole.  Dealing with an 
infection in a key database server is far more delicate than dealing with an infected perimeter 
machine, especially an employee’s PC.

• Cells are replaceable.  Kill one and another soon takes its place.  Employees, at least 
knowledge workers who depend almost totally on their computers, are not only far less 
replaceable, but have their own opinions about being cut off from the corporate system.  IT 
administrators would face a revolt if they routinely ostracized employee’s machines first and 
asked questions later.  Moreover, the detection of wayward behavior may be fallible – it 
could be spoofed, perhaps by an unscrupulous competitor or disgruntled customer or ex-
employee.  That opens the way to a new kind of denial-of-service attack: spoof the corporate 
system into cutting off all the employees.  This would be a computing version of the Ebola 
virus.  Note that the machines in the Internet backbone and peer-to-peer networks are more 
similar to the biological systems in that removing any machine, or even many machines, may 
slow the whole system a bit, but no machine is irreplaceable.  That is because these systems 
were designed from the beginning to be multicellular.

• Finally, sacrificing a cell to save the whole organism begs the question of just what we are 
trying to save in the IT system.  While we want to save the stigmergy structure, saving it at 
the expense of cutting off large numbers of individual employee’s machines may kill the 
company.  The IT infrastructure is like the skeleton of the organism.  It makes no sense to kill 
all the perimeter cells just to save the skeleton.  We need a better understanding of what we 
can sacrifice and what we are protecting by doing so.  Are we seeking to save the majority of 
machines, save the “most important” first, save the CEO’s PC at all costs, or perhaps save 
customer facing machines?

Approaches to programmed suicide in computing  
The lesson from apoptosis tells us that the first level defense should be the individual computer, 
especially those attached at the perimeter of the network.  They should be able to recognize their 
own anti-social behavior and detach themselves from the network.  The second stage should be 
based on specialized computers designed to recognize infected computers that, for one reason or 
another, have not triggered their own suicide mechanism.  The second stage system then tells the 
infected or otherwise wayward machine to ostracize itself.  Modern anti-virus detection could 
serve in both roles.  But we must also consider the tradeoffs in the amount of CPU and/or disk 
access power we want to expend detecting infections.  As with biological systems, multicellular 
computing systems exist to provide a better offence, not the perfect defense.

Ideally, the systems on the periphery could change the degree of defensiveness as they run 
according to “threat-level” messages from a more global detection mechanism.  Think of this 
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central system as a special immune-system organ.  It could be based upon honeypots61, or on 
sniffing and analyzing network packets for signs of unusual activity, or any of the many other 
approaches to network security.  The value, however, comes from each computer being able to 
devote more of its time to detecting possible infections if warned about an elevated threat level. 
That is, the central system would, in effect, warn every machine in the network of an ongoing 
infection, perhaps in a way analogous to the biological inflammation response or fever.

All the detection approaches ultimately depend upon how effectively and reliably the peripheral 
machines can ostracize themselves. A router can “kill” a misbehaving computer by disconnecting 
it.  However, the computer may have other connections, e.g., by WiFi, BlueTooth or other 
wireless means.  The router managing the Ethernet connection may well be different from ones 
managing wireless connections.  The most reliable mechanism is for the computer itself to 
disconnect completely from any network access.  But it has to do so in a way that cannot be 
defeated by the infecting virus.  It may be sufficient to enforce network suicide at the low-level 
OS, perhaps in the drivers so that a virus cannot circumvent the cut off.  Yet even that may not 
work if buffer overflow exploits can modify a driver. 

It may turn out that we cannot trust any software-only solution.  We may need one-way hardware 
shut offs, i.e., the software can shut down all networking devices in a way that cannot be reversed 
without active human intervention.  This might be comparable to the level at which 
CTRL/ALT/DEL is wired into the keyboard of a Wintel machine.

In the final analysis, however, we must remember that cell suicide can be at least as much a threat 
as the viral infection itself if the multi-cellular system cannot tolerate the loss of infected 
computers.  So, above all, we need to begin by architecting the system so that it can treat all 
computers as expendable.

61 Systems set up specifically to attract attacks.  See www.securityfocus.com/infocus/1659
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How the four principles are intertwined
In multicellular organisms each differentiated cell functions in a specialized way as part of a 
coherent larger system.  The ways they specialize and collaborate with other specialized cells in 
the same organism evolved together.  That is, the specializations coevolved – one specialization 
supports and depends upon another.  Similarly, the four principles coevolved during this process 
so that virtually all cells participate in all four architectural realms at once.

Specialization –All healthy Metazoan cells are specialized.  Even adult stem cells are partially 
specialized.  What is perhaps the most specialized aspect of the cells, other than their unique 
shape and function, is their unique repertoire of functional (polymorphic) message receptors.  Yet 
they all share common behaviors too.  Included in the common behavior are participation in the 
cues and signals of their stigmergy relationship with the rest of the body, and obedience to 
apoptosis messages.  That is, as multicellular organisms evolved specialized behaviors, they had 
to also evolve appropriate messaging, stigmergy and apoptosis behaviors.

Polymorphic Messaging – Complex messenger proteins often act as "bundles" of messages.  That 
is, one messenger protein may have separate domains, each with a different messaging 
function.62  And often, the different message domains address separate architectural principles.  
For example, one domain initiates signal cascades specific to the unique function of that type of 
cell (i.e., specialized messaging), another facilitates or verifies physical attachment to the 
extracellular matrix (i.e., deals explicitly with the stigmergy structure), and yet another provides 
signals that either suppress or encourage apoptosis!  The existence of these multi-part messages 
shows not only that the organisms evolved along with the four principles, but also how 
fundamental these principles are. A single multi-part message speaks to the functional 
relationship of the cell to the whole organism/tissue/organ rather than to just a single cell 
function. 

Stigmergy –Virtually all cells other than some simple floating cells such as red blood cells are 
affected by stigmergy cues and/or signals.  Cells that are attached to the Extracellular Matrix 
(ECM), i.e., the stigmergy structure, leave long-lasting cues (persistent messages) in those 
structures that affect other cells. In turn, the cells respond to such cues in ways that cause them to 
modify the physical structures; that's how the structures are built in the first place. Cells that are 
normally attached or in direct contact with the ECM require constant feedback from the ECM. 
Absent the appropriate attachment cues, they suicide (undergo apoptosis).

Apoptosis –almost all cells except cancerous cells participate in apoptosis signaling all the time.  
Most cells must receive "you're OK" messages sufficiently often to prevent their suicide.  Even 
very simple interchangeable and disposable cells such as red blood cells undergo apoptosis.

Not only do cells reflect all four principles at once, the principles themselves are interdependent 
in the sense that each one relies on the others.

• Specialization requires a stigmergy structure (a body) to nurture and protect the 
specialized cells. They would not survive long in isolation. In turn, the stigmergy 
structure, i.e., the whole organism, benefits from their specialized activity.  A stigmergic 
body makes no sense without specialization; Even cells in biofilms specialize. So, too, do 
ants and termites.  The more complex their stigmergic social interactions, the more 

62 See "Exploring and Engineering the Cell Surface Interface" abstract (Stevens, M. M. & George, J. H., 
Science, vol 310, Nov. 18, 2005, pp. 1135-1138)
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specialized are their roles in the insect colony.63  Thus specialization and stigmergy are 
interdependent at a fundamental biological level.

• Once cells specialize, they must interpret messages accordingly.  That's how a 
collaborating group with various specializations can respond in an orchestrated way to 
some common stimulus.  There is no orchestra conductor telling each one what to do.  A 
common message signals the situation and each specialized cell with a receptor for that 
message responds in accordance with its specialized role.  Similarly, specialized ants and 
termites must interpret messages from the perspective of their special abilities.  So 
specialization and polymorphic messaging are strongly interdependent.

• Since apoptosis exists to sculpt and protect a (stigmergic) body, clearly stigmergy and 
apoptosis are interdependent.  But also, the apoptotic messaging pathways depend upon 
polymorphic messaging and the cellular response to apoptosis messages differs according 
to the specialized function of the cell.  Thus apoptosis and specialization are 
interdependent.

Implications for multicellular computing
As multicellular computing architectures evolve, especially the emerging Service Oriented 
Architectures (SOA) and the less formal Web Service mashups, we would be wise to adopt and 
carefully interleave all four principles.  Similarly, the architecture of multicellular computing 
messages should be fully multicellular.  Those who "design" multicellular computing systems (or 
better put, attempt to grow such systems), should not only give thought to the various kinds of 
specialized "cells" that are needed, but also to how those cells implement the four principles and 
fit into a multicellular message architecture.

In summary, as we develop architectural patterns – both hardware and software – for the use of 
each of the four principles in computing, we must develop them so that the four patterns can be 
interwoven.  And there must be a meta-pattern that lays out how the interweaving is to happen.

63 See  http://www2.isye.gatech.edu/%7Ecarl/papers/AndersonMcShea.pdf
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Conclusions
The dynamic complex interactions that drive the evolution of computing toward multicellularity 
have a life of their own.   Yet they are amenable to some steering.  The question is: what roadmap 
should we steer by? 

I argue that we should look to biological metaphors such as the four I have proposed to help us 
make multicellular computing systems more manageable.  The fact that we are already seeing 
evolution toward at least three of the four principles (apoptosis is used occasionally but it is not 
yet common) suggests that they are indeed general enough and useful enough to provide us with 
good insights. That should come as no surprise since, without them, multicellular biological life 
would not be possible and the complexities faced by multicellular life are not unlike those faced 
by multicellular computing. 
If we are more explicit and disciplined about making the transition toward multicellular 
computing and we learn from the lessons of multicellular life, we stand to make the transition 
smoother and perhaps even quicker.  To that end, we need to foster, in our education and in our 
cultural transmission of received wisdom within the computing community, multicellular 
attitudes such as:

• What goes on within any given computer is far less important than what goes on between 
computers. 

• Code that is inside a computer may be valuable, but when it is moving between computers it 
must be assumed to be dangerous. 

• General purpose computers, especially large monocultures of them, will become ever more 
troublesome as virus writers continue to seek out their weaknesses.  Specialize them.

• The meaning of messages should be determined by the receiver of the messages, not the 
sender.

• Individual CPUs are, or should be, expendable and be prepared to commit suicide (or 
disconnect) neatly and safely when compromised. 

• The multicellular computing organism is paramount.  When a single computer offends, cut it 
off.  Better yet, empower the individual computers to sense problems within themselves that 
cause them to cut themselves off. 

• If you want to create a new multicellular computing organism, think about what its stigmergy 
structures might be. Conversely, if you see the emergence of a new kind of stigmergy 
structure, e.g., a public data base wrapped in a Web Service interface, think about what 
multicellular organism(s) will emerge around it.

The stakes are high.  We are at the beginning of the computing equivalent of the Cambrian 
explosion64 – the period of roughly forty million years ending about 500 million years ago in 
which there was a fantastic flourishing of new types of multicellular biological organism.  Most 
of these experiments exist today, if at all, only as fossils that happened to be preserved in the 
Cambrian mud.  Given how rapidly we have recapitulated a couple billion years of single cell 
evolution, perhaps we can recapitulate the forty million year Cambrian period in the next couple 
of decades.  If so, it behooves us to pay close attention to how multicellular computing is 
progressing.  Forward-looking businesses and technologists will have much to do as multicellular 
computing evolves.  Great opportunities will be available for those who anticipate (or lead) the 
successful architectures and great peril for those who back the wrong horse.  They face a choice 
between winning and being a fossil in the mud.

64   See, for example, www.palaeos.com/Ecology/Radiations/CambrianExplosion.html
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It is already clear that there are competing organizational strategies, e.g., completely 
decentralized P2P communities at one extreme versus centrally controlled hierarchical IT 
structures at the other extreme, with some compromise ideas, e.g., Grid architectures, in between.  
And there are competing notions of how Internet messaging should work, e.g., heavyweight SOA 
(which may sink under its load of complexity) versus lighter weight AJAX (which may fail to 
scale well). We also have competing vendors, each pushing the idea that what they sell is just 
what is needed for the future.  Don't believe them!

Most of all, we have competing visions of how evolving computing infrastructures interface with 
evolving business and cultural systems that use the computing systems.  That is, different visions 
of what happens where the silicon meets the flesh.  The digerati imagine cyborg-like symbiosis in 
which people are festooned with wearable or implantable computers that aid them in all manner 
of normal social interactions (or, perhaps, insulate them from normal human interaction).  There 
are neo-Luddites who imagine that we can “keep computers in their place” which, presumably, is 
somewhere far from those who hold such views.  And there are neo-fascists (or those who fear 
them) who imagine that every move we make and thought we voice will be surveiled by ever-
present computer-controlled cameras, microphones, and RFID tracking devices.  What all of 
these ideas share is a lack of understanding that the evolution of computing is already beyond our 
control.  The coevolution of complex computing systems interacting with human social and 
economic systems already has a life of its own.

It is also worth remembering that the processes that give rise to emergent complex systems do not 
stop, or even pause, at one level.  Before one level is fleshed out, another emergent metalevel will 
be forming based upon collaborations between the units at the lower level.  And so it is today. 
Multicellular computing “selves” made most visible by their stigmergy structures are 
collaborating to form even larger and more complex systems.  We can think of some of the more 
public multicellular systems as organs in some larger “body” we have not quite envisioned yet. 
That is, some system may already be evolving that combines a Google plus a BitTorrent, plus a 
Skype, plus who knows what else acting as “organs” to achieve some larger goal.  All that is 
certain is that each stage of multi-level emergence will surprise us.
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